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ABSTRACT

Vision-Based Emergency Landing of
Small Unmanned Aircraft Systems

Parker Chase Lusk
Department of Electrical and Computer Engineering, BYU

Master of Science

Emergency landing is a critical safety mechanism for aerial vehicles. Commercial aircraft
have triply-redundant systems that greatly increase the probability that the pilot will be able
to land the aircraft at a designated airfield in the event of an emergency. In general aviation,
the chances of always reaching a designated airfield are lower, but the successful pilot might
use landmarks and other visual information to safely land in unprepared locations. For small
unmanned aircraft systems (sUAS), triply- or even doubly-redundant systems are unlikely
due to size, weight, and power constraints. Additionally, there is a growing demand for
beyond visual line of sight (BVLOS) operations, where an sUAS operator would be unable
to guide the vehicle safely to the ground.

This thesis presents a machine vision-based approach to emergency landing for small
unmanned aircraft systems. In the event of an emergency, the vehicle uses a pre-compiled
database of potential landing sites to select the most accessible location to land based on ve-
hicle health. Because it is impossible to know the current state of any ground environment,
a camera is used for real-time visual feedback. Using the recently developed Recursive-
RANSAC algorithm, an arbitrary number of moving ground obstacles can be visually de-
tected and tracked. If obstacles are present in the selected ditch site, the emergency landing
system chooses a new ditch site to mitigate risk. This system is called Safe2Ditch.

Keywords: small unmanned aircraft systems, vision-based navigation, emergency landing,
autonomous systems, visual target tracking, multiple object tracking, UAS traffic manage-
ment
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Chapter 1

Introduction

Pilotless flying vehicles have existed in various forms for more than the past century, with

one the earliest examples being bomb-equipped balloons used in an 1849 Austrian attack of

Venice. For the next 50 years, aviation pioneers worked to demonstrate controlled flight of

both manned and unmanned heavier-than-air aircraft. Known as the flying man, German

engineer Otto Lilienthal built gliders and successfully flew distances of 82 to 820 ft (25 to

250 m) from 1891-96. These glider aircraft were controlled by changing the center of gravity

when Lilienthal shifted his body. In 1896, Samuel P. Langley demonstrated his unmanned,

steam-powered Aerodrome No. 5, which flew 3,300 ft (1,000 m) and had no flight controls.

These efforts culminated in Orville and Wilbur Wright’s piloted Wright Flyer I, a powered

aircraft which flew 1,500 ft (450 m) in December 1903. With this demonstration, the Wright

Brothers were the first to perform three-axis control of a flying vehicle.

Inspired by the successes of these early flight innovators, the United States government

was eager to gain the upper hand in World War I and commissioned the Hewitt-Sperry

Automatic Airplane which had its first flight in September 1917. This aircraft, known as

the “flying bomb”, was equipped with a Sperry Corporation gyroscopic autopilot and used

radio frequency (RF) signals for remote piloting [1]. The following year, the U.S. Army

commissioned a second unmanned aircraft project resulting in the Kettering Bug, which

was an unmanned aerial torpedo and a precursor to the present-day cruise missile. This

was arguably the world’s first autonomous unmanned aerial vehicle (UAV) and could be

1
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mechanically programmed to fly a certain distance before cutting engine power, detaching

the wings, and deploying the fuselage, which housed the explosives.

As technology continued to improve and military needs increased, the use of UAVs became

more common during wartime. In 1962, the Ryan Model 147 was created as a reconnaissance

UAV for use in the Vietnam War. Commonly known as the “Lightning Bug”, this UAV was

used for low-altitude photographic and electronic aerial surveillance. As the U.S. military

gained confidence in the usefulness of UAVs they were eventually weaponized into unmanned

aircraft such as the Predator and Reaper drones, which are in use today.

With this brief historical sketch of the development of unmanned flight, we move on to

discuss the main type of system considered in this thesis: small unmanned aircraft systems

(sUAS). An unmanned aircraft system (UAS) is defined by statute as an aircraft that is

operated without the possibility of direct human intervention within or on the aircraft [2].

The UAS is made up of a UAV with its sensor payload and any ground station or other

infrastructure needed for communication. The designation of “small” in sUAS is applied

whenever the aircraft is about the same size as a model aircraft, typically below 55 lb (25

kg). While military use has historically been the primary driving force in the development

of UAS, the past 10 years have especially seen increased hobby, commercial, and civil inter-

est in sUAS. Interestingly, the development of sUAS has been made possible by consumer

electronics such as smart phones and gaming computers. These platforms have increased

the availability of high-quality, low-cost micro-electro-mechanical systems (MEMS) sensors,

low-power processing units, and highly-parallel computing devices such as general-purpose

graphics processing units (GPGPUs) [3]. With lower economical and technological barriers

to entry, a host of sUAS applications have emerged, such as infrastructure inspection, traf-

fic monitoring, package delivery, natural disaster assessment, search and rescue activities,

and others. A handful of private companies have even begun exploring larger UAS for the

purpose of mobility-on-demand using autonomous personal flying vehicles.

2
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Although the popularity and potential of sUAS continues to grow, a major hurdle for

governments and industry to overcome will be the integration of sUAS into the national

airspace system (NAS). In a five-year forecast published by the U.S. Federal Aviation Ad-

ministration (FAA) last year, the FAA projected that the 1,142,000 sUAS units in 2016 will

more than triple to 3,972,000 units by 2021 [2]. In addition to the approximately 5,000

manned aircraft in the NAS during peak times [4], integration of sUAS into the NAS raises

the question of how to effectively deal with such a sharp increase of NAS traffic. To this

end, NASA and the FAA have been working on a UAS traffic management (UTM) concept

since 2015 [5]. UTM is a traffic management ecosystem for low-altitude sUAS operations

in uncontrolled airspace (below 400 ft, 120 m). Its purpose is to connect UAS operators

with real-time data from other UAS in the vicinity, weather and terrain data, and an overall

NAS regulator (e.g., the FAA). This architecture aims to maximize information flow between

users, giving flexibility to operators and their sUAS operations when working in low-risk or

isolated areas and providing support and structure when multiple sUAS operate in densely

populated areas.

1.1 Motivation for Emergency Landing Systems

Integration into the NAS as suggested by UTM requires that unmanned systems flying

beyond visual line of sight (BVLOS) have much more capable on-board autonomy—not only

to carry out specific missions, but to enable safety critical components such as sense and

avoid, forced landing, operation in GPS degraded environments, and communication-loss

mitigation. These safety concerns must be fully addressed and standardized across sUAS in

the NAS. The main topic of this thesis is an emergency landing scheme for sUAS operating

at low-altitudes in the NAS.

In manned aircraft, emergency landing is a crucial aspect of flight safety. When technical

problems such as engine failure or structural damage occur, the pilot must quickly select a

3
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suitable landing site, which may not be at a designated airstrip. Using communication with

air traffic control, a safe landing zone is chosen that is clear of people and other obstacles.

In the case of uncontrolled general aviation airspace, such as FAA Class G airspace, it is the

pilot’s responsibility to visually locate a safe landing site clear of people and other obstacles.

Performing forced landing maneuvers at low-altitude for unmanned aircraft requires the on-

board system to be able to perceive the environment and make decisions on a landing site

autonomously. Additionally, the size, weight, and power constraints of sUAS prevents the

use of double- or triple-mode redundancy as is common in manned aircraft. This results in

the need of a quick reaction time for sUAS emergency landing systems.

A successful model for autonomous interaction with the environment can be found in

the sensory-based decision making process known as situation awareness [6]. Originating in

the military aircraft pilot community, situation awareness is defined as the human process

of perceiving details in the environment, comprehending how those details affect the current

goal, and projecting that comprehension to what will happen in the near future [7]. This

process of situation awareness allows human operators to make critical decisions in a timely

and effective manner. Similarly, adding a sense of situation awareness in autonomous vehicles

allows them to operate effectively in dynamic environments [8]. For example, [9] discuss

adding artificial situation awareness to UAS by using automated dependent surveillance-

broadcast (ADS-B) to cooperatively sense other agents while landing at prepared sites.

The goal of this thesis is to present a sUAS emergency landing framework suitable for

multirotors. This framework, which originated from engineers at NASA Langley Research

Center, Hampton, VA, is called Safe2Ditch. In this thesis, Safe2Ditch is implemented with

vision capabilities and tested in both simulation and hardware. The development of the

visual tracking system that gives Safe2Ditch vision capabilities is discussed in Chapter 2

and Chapter 3. The current state of the Safe2Ditch system is discussed in more detail in

Chapter 4 and a conclusion is given in Chapter 5.

4
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1.2 Summary of Contributions

In addition to the demonstration of a vision-based emergency landing system for multiro-

tors, this thesis presents other research and engineering contributions. These contributions

are listed below in two lists: first, Safe2Ditch-specific contributions, and second, general

contributions that add value to the BYU MAGICC Lab.

Safe2Ditch-specific contributions:

• Python implementation of the Ditch Site Selector component of Safe2Ditch.

• Altitude-dependent tuning to increase tracking consistency during descent.

• ROS/Gazebo software-in-the-loop (SIL) environment for Safe2Ditch. Simulations use

3D models of moving people and satellite imagery to recreate test environments at

Rock Canyon Park, Provo, UT and NASA Langley Research Center, Langley, VA.

• Monte Carlo SIL simulation framework to test the Safe2Ditch system from takeoff to

landing in realistic environments.

• Hardware demonstrations of Safe2Ditch with the visual multiple target tracking system

that tracks obstacles in potential landing zones.

General lab contributions:

• Real-time implementation of Recursive-RANSAC Tracker using C++11 and modern

software development practices. Additionally, software bindings for MATLAB and

Python have been produced for quick prototyping and testing of Recursive-RANSAC.

• Implementation of Visual MTT, the visual front end of R-RANSAC. Computational

efficiency was enhanced by leveraging GPGPU processing via OpenCV and CUDA.

• ROS/Gazebo SIL environment for Pixhawk/APM-based multirotors.

5
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1.3 Thesis Outline

This thesis focuses on the components needed for a reliable sUAS emergency landing

system. Chapter 2 discusses the Recursive-RANSAC estimation algorithm and its real-

time implementation. Recursive-RANSAC was developed in the Multiple Agent Intelligent

Coordination and Control (MAGICC) lab at Brigham Young University (BYU) and has

been applied in this thesis to multiple target tracking (MTT) using a camera on board a

multirotor.

In Chapter 3, the Visual MTT algorithm is extended to allow consistent and continuous

tracking of moving ground objects while descending using an altitude-dependent tuning

scheme. Using the previously mentioned real-time Recursive-RANSAC and Visual MTT

implementations, results from hardware test flights are presented that show how tracking

while descending can be achieved.

Chapter 4 discusses the Safe2Ditch emergency landing system and how augmenting a

pre-compiled database of potential landing sites with the visual tracker developed in Chap-

ters 2 and 3 allows sUAS to react to non-cooperative moving obstacles while landing in

populated areas. The Ditch Site Selection component of Safe2Ditch and the visual tracking

system are tested with 2000 end-to-end Monte Carlo simulations and 16 hardware flights

with a multirotor.

Finally, Chapter 5 concludes with a summary and future research directions of topics

discussed in this thesis.

6
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Chapter 2

The Recursive-RANSAC Tracker

Recursive-RANSAC (R-RANSAC) is an online estimation algorithm developed primarily

by Peter Niedfeldt in the BYU MAGICC Lab from roughly 2012-2014 [10]. Its purpose is

to estimate the states of an arbitrary number of dynamic targets based on noisy observa-

tions [11]. Follow-on work by Kyle Ingersoll [12, 13] and Patrick DeFranco [14] (2013-2015)

applied R-RANSAC to vision-based multiple target tracking. In addition to visual measure-

ments, the R-RANSAC algorithm has been applied to radar data for state estimation of

UAVs [15] and for sUAS sense and avoid systems [16]. R-RANSAC has also been applied to

fiber optic spectral response data by the BYU Fiber Devices Lab for tracking optical peaks

caused by the reflection of fiber Bragg gratings.

Due to the applicability of R-RANSAC to different measurement data, various extensions

and implementations have been created. While these implementations have been mostly

sufficient for their use cases, the lack of a single efficient and well-documented implementation

has been a challenge for new researchers. The purpose of this chapter is to present the theory

of R-RANSAC and a real-time C++ implementation with unified notation and terminology.

The C++ implementation of R-RANSAC is referred to as the R-RANSAC Tracker, while

the core estimation algorithm is referred to as simply R-RANSAC. Additionally, the design

and implementation of a visual measurement front end is discussed in Section 2.4 and the

application of these algorithms is demonstrated in Chapter 3.

7
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2.1 Preliminaries

In its most basic form, R-RANSAC can be thought of as a tool for regression analy-

sis [17]. In classical regression, the goal is to fit a parametric model to observations of

some underlying process given a set of inputs. The parametric model is an often idealized

mathematical representation of the underlying data-generating process. Fitting a parametric

model to a dataset produces an estimate of model parameters. When the parametric model

is instantiated with a set of estimated model parameters, a fitted model is created. This

fitted model can then be used to extrapolate, interpolate, or otherwise perform an analysis

of the underlying process.

Let a parametric model be denoted f(u[k], β) ∈ Rm, where u ∈ Rp is the input, k ∈ R is

the discrete-time index, and β ∈ Rb represents the model parameters. We assume there is

measurement noise such that the observation of this parametric model at each time step k

is given by

y[k] = f(u[k], β) + η[k], (2.1)

where η ∈ Rm is sampled from a zero-mean Gaussian distribution with covariance Ση. In

addition to noisy observation of the true signal f(u[k], β), random observations called gross

errors, or outliers, are detected according to a Poisson distribution with parameter λGE,

where λGE is the expected number of gross errors per time step. We assume that the spatial

distribution of gross errors is independent and uniform. At each time step k, a sensor scan

Zk = Yk ∪ Θk is produced, where Yk = {y[k]} and Θk contains detected gross errors. The

total number of measurements in a sensor scan is denoted ψk and is equal to the cardinality

of the set Zk, denoted ψk = |Zk| = |Yk| + |Θk|. Elements of the sensor scan are unordered

(i.e., it is not known which are gross errors and which are valid measurements) and are

8
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written as Zk = {zj[k]}ψk
j=1. The set of all sensors scans up to time index k is denoted as Zk,

which can be flattened into a column vector, written as Z̃k.

Assuming that the chosen parametric model appropriately represents the observed un-

derlying process, an estimate β̂ of the unknown parameters may be found that minimizes

the modeling error in some optimal sense. Using the fitted model, expected measurements

can be produced as

ŷ[k] = f(u[k], β̂). (2.2)

The modeling error can then be computed in the root mean squared error (RMSE) sense as

RMSE =

√√√√ 1
N

N∑
n=1

(ŷ[n]− y[n])2, (2.3)

where N is the number of sensor scans and y[n] in this equation is understood to be the

noisy observation of the true process and not clutter.

As an example, let f(u[k], β) = Fβ where F =
[
u[k] 1

]
, β =

[
−1 7

]>
, ση = 0.5,

λGE = 0.5, and u[k] ∼ U(−10, 10). Thus, observations of the underlying process can be

simulated as shown in Figure 2.1. For the purposes of simulating data, the underlying

process is chosen to be a parametric model with a set of true parameters, β. The next two

subsections present standard practices in fitting this parametric model to noisy observations,

resulting in estimated model parameters, β̂, and a fitted model, f(u[k], β̂).

2.1.1 Least Squares Parameter Estimation

The most common method for estimating parameters of a signal with constant parameters

is least squares (LS). Using LS, a linear fit may be found that minimizes the sum of squared

9
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Figure 2.1: Simulated data from observation of an underlying process. Outliers are detected in
addition to noisy observations of a true linear signal.

error between the fitted model and the data of an over-determined system. This estimator

is written as

β̂LS = F †Z̃k = (F>F )−1F>Z̃k, (2.4)

where the ·† operator denotes the Moore-Penrose pseudoinverse.

In the absence of gross errors, LS does well at fitting a parametric model of a line to the

data, as shown in Figure 2.2a. The estimated parameters using LS with no gross errors are

found to be β̂LS1 =
[
−1.00 7.04

]>
with an RMSE of 0.064. However, when the observations

include gross errors due to sensor processing or environment noise, the estimated parameters

are β̂LS2 =
[
−0.60 7.06

]>
with an RMSE of 5.12 (see Figure 2.2b). Because LS uses all

of the data, the gross errors can significantly affect the fitted model. The next subsection

presents a scheme for classifying gross errors as outliers and ignoring them when fitting the

parametric model.

10
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Figure 2.2: LS applied to the dataset observed according to equation (2.1). When gross errors
are present in the data as in (b), LS does not fit the parametric model very well.

2.1.2 Random Sample Consensus (RANSAC) Parameter Estimation

In the presence of noise, a greater amount of data is typically preferred because a better

fit can be achieved. However, gross errors degrade the result, as seen from performing LS in

Figure 2.2b. To increase robustness in the presence of gross errors, Fischler and Bolles [18]

developed an iterative algorithm known as random sample consensus (RANSAC).

The goal of RANSAC is to use a voting scheme to classify the gross errors as outliers

and to use the remaining data to fit the given parametric model. This is achieved by using

randomly chosen minimum subsets of the data to create a temporary fitted model, called a

hypothesis model. To fit a parametric model with parameter space Rb to the observations,

at least b data points are required in the minimum subset. Each hypothesis model is then

scored based on how consistently it explains the rest of the data and data points that are

associated with a hypothesis model are called inliers. The hypothesis model with the most

inliers wins and those inliers can then be used to perform additional smoothing if required

(e.g., using LS), resulting in a final fitted model with estimated parameters β̂. Concretely,

the steps performed by RANSAC in a single iteration are

11
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Figure 2.3: RANSAC applied to the dataset observed according to equation (2.1). Unlike LS,
gross errors in the data do not affect RANSAC’s parameter estimation. Note that RANSAC has
classified the colored points as outliers in (b).

1. Randomly sample the minimum number of data points needed to estimate model pa-

rameters, β̂. This minimum subset is called the hypothetical inliers.

2. Create a hypothesis model using the hypothetical inliers.

3. Compare all other data points with the hypothesis model using an inlier function

specific to the parametric model being used (e.g., Euclidean distance for an affine model

or reprojection error for a homography). Any data point that fits the hypothesis model

well according to the inlier function are inserted into the consensus set.

4. If this hypothesis model has more members in the consensus set than the result of the

last iteration, then use this hypothesis model for the next iteration.

These steps are repeated for ` iterations or until a sufficiently good hypothesis model has

been created. As previously mentioned, the consensus set of the best hypothesis model is

then used to create a final fitted model.

12
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When RANSAC is applied to the dataset without gross errors, the estimated parame-

ters are found to be β̂RANSAC1 =
[
−1.06 7.04

]>
with an RMSE of 0.18 (see Figure 2.3a).

Alternatively, when the dataset with gross errors is used, we see that RANSAC is able to

reject outliers and the estimated parameters are found to be β̂RANSAC2 =
[
−1.00 6.96

]>
with RMSE of 0.07 (see Figure 2.3b). Note that RANSAC classified data further than 1 unit

away from the resulting fitted model as outliers (denoted by color).

2.1.3 Summary

As we can see, RANSAC is a robust method for estimating the parameters of a single

stationary signal in clutter. However, we would like to estimate the parameters of multiple

non-stationary signals in clutter. Stationary signals are stochastic processes whose parame-

ters such as mean and variance do not change over time. In other words, stationary signals

have a constant β, while non-stationary signals have parameters that can vary over time.

Fortunately, R-RANSAC allows us to estimate signals with time-varying parameters, known

as state.

Additionally, note that the data in the previous model fitting examples was assumed to be

available all at once, i.e., in a single batch. In the real-time estimation problems that we are

interested in, the parameters must be estimated online, meaning that new data is received

with each time step. An extension to LS called recursive least squares (RLS) exists that is

able to efficiently incorporate new data with what is known as a rank-one update for matrix

inversion [19]. The goal of R-RANSAC is to provide a recursive extension to RANSAC, just

as RLS is a recursive extension to LS. The R-RANSAC algorithm is developed in the next

section.

13
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2.2 Formulation of Recursive-RANSAC

2.2.1 Problem Setup

Recursive-RANSAC is able to estimate the parameters of an arbitrary number of non-

stationary processes in clutter. In target tracking, non-stationary underlying processes are

dynamic targets such as people, animals, or vehicles. To apply R-RANSAC to target track-

ing, let M [k] be the number of true targets at each time step k. Denote the state (i.e., the

time-varying parameters such as position and velocity) of the ith target as xi ∈ Rn. The

discrete-time dynamics of the ith target are modeled as

xi[k] = Axi[k − 1] + wi[k], (2.5)

where A ∈ Rn×n is the motion model and wi ∈ Rn is a wide-sense stationary (WSS), zero-

mean Gaussian process with covariance Q that captures uncertainties in modeling. This

discrete-time difference equation illustrates how the state of the underlying process evolves

with time according to a given motion model.

At each time step k, an observation of each target is attempted. Noisy observations in

the measurement space denoted by Ry ⊂ Rm are received via sensors. The probability that

the ith target is detected is modeled by the random process P ik(ω), where the outcome ω

lies in the universe of outcomes Ω = {0, 1} and ω = 0 indicates that no measurement was

received. The distribution over the universe of outcomes for the ith target is assumed to

be Bernoulli with parameter pid. Using this model and given the current state xi of the ith

target, measurements yi ∈ Ry of the ith target are received according to

yi[k] =

∅, ω = 0
Cxi[k] + vi[k], ω = 1

, (2.6)
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where C ∈ Rm×n is the measurement model and vi ∈ Rm is a WSS, zero-mean Gaussian

process with covariance R that represents sensor noise. In other words, with probability pid,

a measurement for the ith target is received and with probability 1− pid the sensor fails and

no measurement is received at time step k.

In addition to a noisy observation of the ith target yi[k], random observations called

gross errors, or outliers, are detected according to a Poisson distribution with parameter

λGE, where λGE is the expected number of gross errors per time step. We assume that the

spatial distribution of gross errors is independent and uniform. At each time step k, a sensor

scan Zk = Yk∪Θk is produced, where Yk = {yi[k]}M [k]
i=1 and Θk contains detected gross errors.

The total number of measurements in a sensor scan is equal to the cardinality of the set Zk,

denoted ψk = |Zk| = |Yk| + |Θk|. Elements of the sensor scan are unordered (i.e., it is not

known which are gross errors and which are valid measurements of targets) and are written

as Zk = {zj[k]}ψk
j=1. For convenience, define kN , k − Nw + 1 as the initial time index of

a Nw-length measurement window ending at the current time step k. Because storing all

of the data is infeasible, let Zk = {ZkN
, . . . , Zk} be a sliding dataset of the Nw most recent

sensor scans. This sliding window of data can be “flattened” into a column vector, written

as Z̃k =
[
z1[kN ] · · · zψkN

[kN ] · · · z1[k] · · · zψk
[k]
]>

.

Note that equations (2.5) and (2.6) constitute a state-space model. This state-space

model has the same role as equation (2.1), rewritten here for convenience

y[k] = f(u[k], β) + η[k].

This equation is the noisy observation of the parametric model f(u[k], β) with constant pa-

rameters. Similar to η, the noise processes wi and vi in equations (2.5) and (2.6) capture the

uncertainty associated with modeling and measuring. In contrast to the regression example

in Section 2.1, notice how the state-space model for dynamic targets we have developed does
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Table 2.1: Notation and terminology comparison of stationary vs non-stationary estimators.

Terminology LS/RANSAC R-RANSAC

model parameters β ∈ Rb xi ∈ Rn

state space model
parametric model f(u[k], β) xi[k] = Axi[k − 1]

yi[k] = Cxi[k]

fitted model f(u[k], β̂) (A,C, x̂i)

input u ∈ Rp —

observation y ∈ Rm yi ∈ Rm

sensor measurement zi ∈ Rm zi ∈ Rm

not contain an input u ∈ Rp. This is because we are attempting to track non-cooperative

targets (i.e., we do not receive the input used to command a target to move). The analog of

the parametric model f(u[k], β) from before is the pair (A,C). Given an estimate of param-

eters x̂i at time step k, the parametric state-space model pair (A,C) can be instantiated to

create a fitted state-space model, written as (A,C, x̂i). Further, the expected state at the

next time step can be predicted using

x̂i[k + 1] = Ax̂i[k], (2.7)

and expected measurements can be produced as

ŷi[k + 1] = Cx̂i[k + 1]. (2.8)

A complete notation and terminology comparison between traditional regression and esti-

mating the state of multiple dynamic targets is given in Table 2.1.
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To solve the problem of tracking an arbitrary number of dynamic targets in clutter, we

develop the three principal components of the R-RANSAC Tracker in a bottom-up approach.

We start with the development of RANSAC for dynamic targets, which is used to initialize

fitted state-space models. These fitted models are managed by R-RANSAC, which uses a

bank of Kalman filters to propagate and correct them according to new observations. Finally,

we discuss the R-RANSAC Tracker, which is a top-level algorithm that handles the real-time

aspect of the data collection and manipulation. These three algorithms are discussed in the

following three subsections.

2.2.2 RANSAC for Dynamic Targets

At a high level, RANSAC is simply an iterative algorithm that can be used to fit various

types of parametric models in the presence of outliers. To effectively use RANSAC to

estimate the states of multiple targets, we must first understand how to fit a single dynamic

parametric model without outliers. The result of this step is an estimate of the single target’s

state at the beginning of the Nw-length window of observations.

Before this discussion, we make an observation about motion models and their use in

state-space equations. A common, low-order dynamic model used in state-space equations

for estimating maneuvering targets is the nearly-constant-velocity (NCV) model [20]. Higher-

order models such as the nearly-constant-acceleration (NCA) and nearly-constant-jerk (NCJ)

are also used. These motion models are linear and can be written in continuous state-space

form, such as

ẋ =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

ANCV

x, (2.9)
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where x ,

[
x y ẋ ẏ

]>
is the state of a target moving in a plane. Because there is no

input in equation (2.9), the state will evolve according to the initial conditions. A derivation

of the discrete motion models used in R-RANSAC can be found in Mehrotra and Mahapatra

[21].

In this section, RANSAC is used to initialize new R-RANSAC tracks in a batch of noisy

and cluttered data. Although the R-RANSAC algorithm in Section 2.2.3 uses NCJ motion

models to propagate tracks, the implementation of the RANSAC algorithm discussed in

this section uses NCV motion models to generate hypotheses, although we wish to track

highly maneuverable targets. In practice, this use of NCV models to initialize new tracks

is justifiable assuming that the rate at which measurements are received is high enough.

In this case, even jerks fit the NCV model over the short Nw-length measurement window.

Additionally, as recognized in the the computer vision community [22], it is ideal to require as

few measurements in the minimum subset as possible. For a NCV model, only two position

measurements are needed.

2.2.2.1 Single Target, No Clutter

Following the development in [11], consider the case where M [k] = 1 ∀k, pd = 1, and

λGE = 0. These assumptions ensure that one measurement from the single target is received

per sensor scan. For the sake of notation consistent with [11], we note that there is no clutter

(i.e., |Θ| = 0) and so Zk = {z[k]} = Yk = {y[k]}. Therefore, in this section we will refer

to the scan as simple Yk, with the sliding dataset written as Yk and the flattened column

vector as Ỹk =
[
y[kN ] y[kN + 1] · · · y[k]

]>
Our objective is to find an estimate x̂[kN ] of

the single target’s initial state given a batch of data, Yk.

Assuming the discrete LTI state-space model of equations (2.5) and (2.6) is consistent

with the received batch of measurements, Yk, we can form a regression problem as we have
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seen before in Section 2.1. The result of this regression will be the initial target state, x̂[kN ].

We begin by stacking the measurement equation of the state-space model, which gives us a

parameterized model of the measurements we expect to receive given an initial state x[kN ]:


y[kN ]

y[kN + 1]
...

y[k]

 =


Cx[kN ]

Cx[kN + 1]
...

Cx[k]

+


w[kN ]

w[kN + 1]
...

w[k]

 . (2.10)

Note how this is a parameterized model similar to the parameterized model in Section 2.1,

where the β ∈ Rb = RnNw is made up of the stacked states. By noting that the states are

expected to evolve over the Nw-length dataset as

x[kN ] = Ix[kN ]

x[kN + 1] = Ax[kN ] + w[kN + 1]

x[kN + 2] = A2x[kN ] + w[kN + 2]
...

x[k] = ANwx[kN ] + w[k],

we can lower the dimension of the parameter space Rb and equation (2.10) can be simply

parameterized by the initial state x[kN ]. Let O ,

[
C CA · · · CANw

]>
be an mNw × n

matrix that describes the expected measurement received at time step k from an initial

state x[kN ]. If Nw = n then O is the observability matrix. Define ξk , GWk + Vk, where

Vk ,

[
v[kN ] · · · v[k]

]>
, Wk ,

[
w[kN ] · · · w[k]

]>
, and let

G ,


0 0 0 . . . 0
0 C 0 . . . 0
... ... ... . . . ...
0 CANw−2 CANw−3 . . . C

 , (2.11)
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which is an mNw × nNw matrix that describes how the process and measurement noise is

propagated from the initial state to the end of the window. Then, equation (2.10) can be

written as

Ỹk = Ox[kN ] + ξk. (2.12)

Examining the stochastic process ξk ∈ RmNw , we see that it is a zero-mean Gaussian

process with covariance given by

Ξk = E[ξkξ>k ] = GE[WkW
>
k ]G> + 2E[VkW>

k ]G> + E[VkV >k ] = GQG> + R, (2.13)

where the cross-terms cancel because wk and vk are independent. The covariance matrices Q

and R are block-diagonal with Nw blocks of Q and R, respectively, along the main diagonal.

Using the new, low-dimensional parameterized model of equation (2.12), we wish to find

the initial state x[kN ] that best fits the dataset. As before, if we assume there is no noise

(i.e., wk = vk = 0), we could simply use a LS estimator. However, we can use the statistics

of the the noise to find a better model fit to the noise-corrupted dataset. In other words,

we can find the most likely initial state x[kN ] given the dataset, a parameterized model, and

the covariance of the noise.

The probability density function (pdf) of a realization of noise ξk is

fξ(x) = 1√
(2π)mNw det(Ξk)

exp
(
x>Ξ−1

k x
)
. (2.14)
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Thus, the likelihood of receiving the batch of measurements Ỹk given an initial state x[kN ]

is written

L(Ỹk | x[kn]) = 1√
(2π)mNw det Ξk

exp
(
−1

2(Ỹk −Ox[kn])>Ξ−1
k (Ỹk −Ox[kn])

)
, (2.15)

where L(·) ∈ R is known as the likelihood function. Note that this estimator still requires

a parameterized model (A,C) to fit to the data. The maximum likelihood estimate (MLE)

of x[kN ] is found by maximizing the likelihood function over the parameters x[kN ]. This

is equivalent to maximizing the log-likelihood `(·) = lnL(·), which is in a more convenient

form, given by

`(Ỹk | x[kn]) = −mNw

2 ln 2π − 1
2 ln det Ξk −

1
2(Ỹk −Ox[kn])>Ξ−1

k (Ỹk −Ox[kn]). (2.16)

By taking the derivative and equating it with zero,

0 = ∂`

∂x
= O>Ξ−1

k Ỹk −O>Ξ−1
k Ox[kN ], (2.17)

we can find the MLE as

x̂[kN ] = (O>Ξ−1
k O)−1O>Ξ−1

k Ỹk. (2.18)

The covariance of the MLE is

P [kN ] = E[(x̂[kN ])(x̂[kN ])>]
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= (O>Ξ−1
k O)−1O>Ξ−1

k E[YkY>k ]((O>Ξ−1
k O)−1O>Ξ−1

k )>

= (O>Ξ−1
k O)−1O>Ξ−1

k ΞkΞ−1
k O(O>Ξ−1

k O)−1

= (O>Ξ−1
k O)−1(O>Ξ−1

k O)(O>Ξ−1
k O)−1

= (O>Ξ−1
k O)−1. (2.19)

Notice how the maximum likelihood estimator is similar to the least squares estimator,

but weighted by the covariance of the noise in the dataset. Although we have shown how

to estimate the state (i.e., the time-varying parameters) of a single non-stationary stochas-

tic process, we have still not resolved the difficulty associated with gross errors. This is

accomplished in the next section.

2.2.2.2 Multiple Targets in Clutter

We now let the number of true targets be M [k] ≥ 0, where the ith target has probability

of detection pid ∈ [0, 1] and λGE ≥ 0. Under these conditions, multiple measurements are

received each time step, and some may be clutter from the faulty sensor. As in the previous

section, the objective is to estimate the initial state xi[kN ] of the ith target.

We use the RANSAC framework to fit up to ` hypotheses to the data, scoring each one

to determine if it is a better hypothesis than the others. Each hypothesis is formed using a

minimum subset S of b = n
d
data points, where n depends on the motion model A ∈ Rn×n

and d is the dimensionality of the environment. For example, when tracking targets on

a plane (d = 2) with a nearly-constant-velocity (NCV) motion model, ANCV ∈ R4×4, the

minimum subset would require b = 2 points, which is equivalent to the number of points

necessary for fitting a line to data. Given the current flattened window of measurements

Ỹk and the total number of measurements Ψk = |Ỹk|, the initial state and covariance of a

hypothesis can be initialized using MLE. This is done by randomly selecting b points from

the dataset and flattening them into Ỹbk. Using the scan indices of the randomly selected
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points, Ō, Ḡ, and Ξ̄ matrices can be constructed. These matrices have the same purpose as

in Section 2.2.2.1, but they are smaller because there are only b measurements being used

in Ỹbk.

After using the minimum subset to find the maximum likelihood estimate x̂[kN ] and its

covariance P [kN ], this hypothesis is scored using all of the measurements in the dataset. By

calculating the residual r = Ỹk −Ox̂[kN ], we can determine the inliers to the hypothesis by

finding which measurements have a residual magnitude less than some threshold, τR,ransac.

These inliers are stored in the consensus set χ of the hypothesis, which is used to compare

hypotheses. If the current hypothesis has a greater inlier ratio, |χ|
Nw

, then it replaces the

previous best hypothesis. This process is repeated for ` iterations, or until a hypothesis is

found with an inlier ratio greater than γ.

Once the best hypothesis is determined, the initial state x̂[kN ] and the corresponding

covariance P [kN ] and consensus set χ are used in a Kalman smoother to instantiate a new

R-RANSAC track, denoted Ti[k] = (A,C, x̂i[k], Pi[k]).

2.2.3 R-RANSAC Core

The core R-RANSAC algorithm is responsible for using RANSAC for track initialization,

managing existing tracks, and determining when a track is good. At each time step k, a

new measurement scan Zk and a transformation Tk is received. These inputs are used to

perform the following high-level tasks: (1) track transformation, (2) track propagation, (3)

measurement classification, (4) RANSAC initialization using outliers, (5) track correction,

and (6) track management. Each of these steps are discussed below.
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2.2.3.1 Model Transformation

In this thesis, data primarily comes from vision processing and so the transformation Tk ∈

R3×3 represents a homography, which is a type of perspective projection (see Section 2.4).

Alternatively, the transformation Tk ∈ SE(3) could represent a 3D rotation and translation

in a 4 × 4 homogeneous matrix. Using the transformation Tk, the data from the previous

Nw−1 scans are transformed into the same coordinate frame as the new scan. By expressing

all data in the same coordinate frame, the R-RANSAC Tracker can used when the sensor

is rigidly moving with respect to the surveillance region R. Additionally, any R-RANSAC

models have their state x̂i and covariance Pi transformed using Tk.

2.2.3.2 Propagation

Once all data is in the same coordinate frame, the R-RANSAC Tracker then runs the R-

RANSAC estimation algorithm on the updated dataset Zk which contains the latest sensor

scan Zk. The first step is to propagate the state and covariance of each R-RANSAC track

forward by one time step so that we can predict where new measurements will be. This

propagation step is performed using the standard Kalman filter equations for the ith track,

x̂+
i [k] = Ax̂i[k − 1] (2.20)

P+
i [k] = APi[k − 1]A> +Q. (2.21)

2.2.3.3 Measurement Classification

Once the predicted state of each track is available, this prediction is used to classify

the newest scan of measurements Zk ∈ Zk as either inliers or outliers. For each of the i

R-RANSAC tracks in memory, the expected measurement ŷi[k] for the current time step is
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found using equation (2.8). Then, the Euclidean distance from ŷi[k] to the jth measurement

zj[k] ∈ Zk is computed. If this distance is less than the inlier region, defined as a circle with

radius τR, then the jth measurement is flagged as an inlier to the ith track. These inliers will

be used later in the correction step of R-RANSAC. Note that a single measurement could

be counted as an inlier to multiple tracks.

2.2.3.4 RANSAC Initialization

If a measurement zj[k] is not marked as an inlier to any of the i R-RANSAC tracks, then

it is used with RANSAC to initialize a new track (see Section 2.2.2). Instead of randomly

selecting b measurements from the flattened dataset Ỹk, the outlier measurement is used and

only b− 1 measurements are randomly chosen from Z̄k. The function call to the RANSAC

routine looks like

T ← RANSAC(Z̄k, zj[k]), (2.22)

which returns a new R-RANSAC track T that will be added to the set ofM tracks T that

R-RANSAC manages. This step is key in allowing operator-free tracker initialization.

2.2.3.5 Correction

Next, each R-RANSAC track is updated using measurements from the current scan that

were classified as inliers. The standard Kalman update is given by

Si[k] = CP+
i [k]C> +R (2.23)

Ki[k] = P+
i [k]C>S−1

i [k] (2.24)
x̂i[k] = x̂+

i [k] +Ki[k](ζ − ŷi[k]) (2.25)
Pi[k] = (I −Ki[k]C)P+

i [k], (2.26)

25



www.manaraa.com

Figure 2.4: Architecture of the R-RANSAC Tracker.

where Si[k] is the residual covariance, Ki[k] is the optimal Kalman filter gain, and ζ is a

valid measurement received from the underlying process. However, because the true data

association is unknown in multiple target tracking with gross errors, we use a synthetic

measurement residual. The synthetic residual is found by weighting each residual zj[k] −

ŷi[k] ∀j ∈ I by the normalized likelihood that zj[k] would have been received. The likelihood

is given by the pdf of a Gaussian with mean ŷi[k] and covariance Si[k]. The sum of these

weighted residuals gives the synthetic residual s and the state of the ith track is then updated

as

x̂i[k] = x̂+
i [k] +Ki[k]s. (2.27)

2.2.3.6 Model Management

The last task for R-RANSAC to perform is model management, which prunes tracks that

have not received measurements in some time and merges tracks that have similar state. This

step allows R-RANSAC to be run with little or no operator intervention and the pruning

and merging parameters are tunable.
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2.2.4 R-RANSAC Tracker

In addition to real-time tracking of multiple dynamic targets, the so-called R-RANSAC

Tracker enables R-RANSAC to be used from a moving sensor. Because R-RANSAC operates

on a sliding window of data, it is important for all of the data to be expressed in the same

coordinate frame. Using the transform Tk, the R-RANSAC Tracker manages this sliding

dataset and transforms older sensor scans into the same coordinate frame as the newest

scan. The implementation of the R-RANSAC Tracker is discussed in the following section.

2.3 Implementation

To use Recursive-RANSAC in real-time on-board an autonomous vehicle, it was imple-

mented in C++11 with modern syntax. The goal of this implementation is to be as much

of a one-size-fits-all implementation as is reasonable in a research setting. Having a single

codebase allows documentation, issues, questions, and new features to benefit all who use

it. In this section, we give a high-level overview of the R-RANSAC Tracker codebase with

suggestions on how to maintain it.

The project is implemented as a C++11 shared library, similar to the style of OpenCV [23]

or Eigen [24], as opposed to a collection of source file that are compiled with every project that

uses R-RANSAC. Using a shared library allows users to compile R-RANSAC once, install

it on their machine, and then use multiple software packages that use the same installation

of R-RANSAC. This pattern is used frequently to manage software versions and to lessen

compilation cost. Additionally, this pattern accentuates the organization of R-RANSAC and

how it is a sensor-modality-agnostic algorithm.

A directory listing of the R-RANSAC Tracker (sometimes referred to as librransac) is

given in Figure 2.5. In addition to providing the standard C++ interface through the public

header files, bindings for MATLAB and Python 2.7/3 are provided. Using the CMake build
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rransac/

benchmarks/

bindings/

python/

matlab/

cmake/

debug/

include/rransac/

access_type.h

core/

common.h

measurement.h

model.h

motion_model.h

parameters.h

ransac_extras.h

ransac.h

rransac.h

sources.h

utils.h

tracker.h

version.h

src/

tests/

Figure 2.5: Directory listing of the R-RANSAC Tracker codebase. Only the header files are
shown.
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system as described in the librransac wiki, these extra bindings can be built and installed

on the users machine. These bindings are useful for rapid prototyping and quickly interfacing

with other types of data.

The public application programming interface used by other software pacakges developing

with librransac can be found in the tracker.h header file. The other header files in core

are useful for understanding how librransac works, but should not be accessed by other

software packages. Additionally, the access_type.h header file allows software packages to

use their own data structure for passing in measurements. Using the template provided, an

AccessType class is created that specifies how to use the foreign data structure. Internally,

librransac takes this data and converts it into a rransac::core::Measurement, where a

scan of measurements is stored as std::vector<rransac::core::MeasurementPtr>.

Although not discussed in this thesis, librransac allows measurements to come from

multiple sources. The ith measurement source is equipped with its own noise statistics,

represented in the source covariance matrix R(i). More information about the theory of

multiple measurement sources and the centralized information fuser can be found in [25].

Because of this implementation addition, the parameters.h header file enables the user to

add specific measurement sources that measurements are obtained from. A minimal example

of using librransac to add a scan of measurements from a single measurement source is

given in Listing 2.1.

2.4 Application: Visual Tracking

In this thesis, multiple target tracking (MTT) is performed with a camera to allow a

descending multirotor to image potential landing zones and detect moving obstacles. Using

the C++ implementation of R-RANSAC discussed in the preceding section and the Robot

Operating System (ROS) [26], a visual tracker called Visual MTT is implemented for

real-time, online processing.
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#include <rransac / t r a cke r . h>

int main ( ) {

r ransac : : Tracker t r a cke r ;

r ransac : : core : : Parameters params ;

// id 0 , has v e l o c i t i e s , pos and v e l var iances

params . add_source (0 , true , 5 , 1) ;

t r a cke r . set_parameters ( params ) ;

// do some proce s s ing so t h a t source 0 ob t a in s measurements

. . .

// Add measurements from source 0 ; see w ik i f o r Data Accessor i n f o

t r a cke r . add_measurements<EigenVector2dAccess >(pos , ve l , 0) ;

// Run the R−RANSAC Tracker

auto models = t ra cke r . run ( ) ;

}

Listing 2.1: Minimal example of interfacing with librransac.
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Chapter 3

Visual Multiple Target Tracking From a Descending Aerial Plat-

form1

3.1 Introduction

Autonomous vehicles are quickly becoming ideal platforms in research, commercial, mil-

itary, and civil applications. Typical autonomous systems include self-driving cars, personal

air vehicles, and small unmanned aircraft systems (sUAS). As these vehicles are integrated

into our society and infrastructure, an increased level of autonomy will be required—both

for safety and for mission capability. This higher level of autonomy will allow vehicles to

perceive their environment and act within certain parameters to achieve their goal. This

construct of sensory-based decision making is modeled by situation awareness [6].

Situation awareness (SA) is a term that originated in the military aircraft pilot community

and is defined as the human process of perceiving details in the environment, comprehending

how those details affect the current goal, and projecting that comprehension to what will

happen in the near future [7]. This process of SA allows human operators to make critical

decisions in a timely and effective manner. Similarly, adding a sense of SA in autonomous ve-

hicles allows them to operate effectively in dynamic environments [8]. The main contribution

of this paper is in enhancing the SA perception stage of sUAS through altitude-dependent

visual multiple target tracking during a descent.
1This chapter is a modified version of the paper published in the 2018 American Control Conference,

written by Parker C. Lusk and Randal W. Beard [27]
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Figure 3.1: Visual tracking system architecture. The altitude of the sUAS is used to tune
the parameters of the Recursive-RANSAC visual tracker during a descent. Real-time tracking is
performed with an onboard NVIDIA Jetson TX2.

Beyond visual line of sight (BVLOS) operation is an important aspect of truly au-

tonomous vehicles. The challenge of understanding the environment and avoiding obstacles

at the beginning and end of a sUAS flight has been referred to as the “first/last 50 feet

problem” [5]. Specifically, difficulties arise when sUAS must descend and possibly land in

an environment with obstacle uncertainty, such as in the case of forced landings or package

delivery [28]. Situation awareness is crucial for these tasks to minimize the risk of damage

to moving ground obstacles. In work by McAree et al. [9], the authors simulate UAS dur-

ing landing at prepared sites in the presence of multiple agents and state uncertainty. The

SA of the UAS is enhanced using automated dependent surveillance-broadcast (ADS-B) for

cooperative sensing of other agents. The landing approach taken by Scherer et al. [29] uses

lidar for non-cooperative sensing to autonomously land a full-scale helicopter at unprepared

sites. Mejias et al. [30] demonstrate a camera-based landing zone detection algorithm for

UAS in emergency landing scenarios. In our work, a visual multiple target tracker is used to

perceive information about moving ground targets. We focus on the target tracking infor-

mation needed to refine an unprepared landing site that has already been selected by other

means.
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Visual target tracking has been an active area of computer vision research [31, 32, 33].

Tracking can focus on single or multiple objects and can take place on a static or moving

platform. Initialization of tracking typically falls in the category of tracking-by-detection

or detection-free tracking. Tracking-by-detection performs frame-to-frame association of

detections generated by pre-trained object classifiers [34], feature descriptors [35], or even a

simple corner detector [36]. Conversely, detection-free tracking must be manually initialized,

as in the work of Kalal et al. [37].

Visual tracking gives sUAS situation awareness and can enable many autonomous appli-

cations. Cameras are ideal sensor packages for sUAS because they are low-cost, small, and

rich with visual information. In the work of Thomas et al. [38], a small quadrotor with a

downward-facing camera is used to track and follow a single object with known geometry.

Teulière et al. [39] also track and follow a single object using a template image, removing the

need of prior target geometry. A color-based tracker and a particle filter are used, allowing

tracking robustness in partial or full occlusion of the target selected by the user. Pestana et

al. [40] performs visual servoing from a sUAS by tracking a single user-specified object.

Multiple object tracking (MOT) from a moving camera is of particular interest in sUAS

applications because it adds robustness to surveillance techniques where the number of tar-

gets or the nature of the camera motion is not known beforehand. Rodriguez-Canosa et

al. [41] use Parallel Tracking and Mapping (PTAM) [42] for motion estimation which is then

used to create an artificial optical flow field. The difference between Lucas-Kanade optical

flow and the artificial flow field exposes dynamically moving objects; however, this technique

requires initialization using a marker map and may struggle to detect objects moving with

similar velocity to the multirotor. Jiang and Cao [43] are able to track multiple objects in

post-processed aerial video using detections based on background modeling, but do not use

Bayesian filtering for track management. Li et al. [44] successfully track other sUAS for

sense and avoid applications in post-processed aerial footage using a similar visual tracking
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front-end to ours; however, they assume targets are non-deformable which limits the types of

objects that can be tracked. Teutsch and Krüger [45] post-process aerial videos and demon-

strate traffic surveillance and tracking from a constant altitude. Their approach is most

similar to our tracking pipeline, but assumes constant altitude stable flight over structured

environments, which results in smooth video input.

We perform real-time visual multiple object tracking onboard a sUAS using an algorithm

known as the Recursive-RANSAC (R-RANSAC) visual tracker. In contrast to existing track-

ing solutions, our algorithm runs on a moving platform, requires no manual initialization,

can run in real-time during a flight, and can track an arbitrary number of moving objects in

clutter. In addition, we propose an altitude-dependent tuning scheme that increases track

continuity during a descent, as shown in Figure 3.1. This coupling of aircraft state and

tracker increases the situation awareness of the sUAS allowing future work to autonomously

plan safe trajectories during the “last 50 feet” [5].

The organization of this paper is as follows. Section II gives an overview of R-RANSAC

and the visual measurement front-end. In Section III we present the proposed tuning scheme

to increase track continuity during a descent. Section IV discusses the hardware implemen-

tation and demonstration. Tracking results are reported and discussed in Section V and

future research directions are given in Section VI.

3.2 Visual Tracking

As shown in Figure 3.1, the visual multiple-target tracker used in this work consists

of two major components: the visual measurement front end and the Recursive-RANSAC

(R-RANSAC) tracker. Using the visual tracker in conjunction with an altitude-dependent

tuning scheme allows the algorithm to continuously track objects as the sUAS descends. We

discuss these components in the following subsections.
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(a) Propagation

1

2

3

(b) Initialization

2

(c) Update (d) Elevation

Figure 3.2: The four steps of R-RANSAC demonstrated on a surveillance region in R2. Timesteps
are denoted by the grey vertical lines, the current timestep is rightmost. Measurements (◦) may be
clutter or from targets. (a) Hypothesis models (4) are predicted forward in time (dotted). New
measurements are associated as inliers or outliers. (b) Outliers are used to generate RANSAC
hypotheses (1, 2, 3). (c) Inlier measurements are used to correct the model prediction. The
RANSAC hypothesis with the most support (hypothesis 2) is stored as a model. (d) Models that
have good support and have been tracked for a while without too many missed detections are
elevated to a track (∗).

3.2.1 Recursive-RANSAC Tracker

R-RANSAC is an online estimation algorithm capable of tracking an arbitrary number of

objects in clutter [11, 10, 12, 46]. Measurements are contained in the surveillance region R

of the system, where R ⊂ R2 in this work. Using the incoming measurements, the algorithm

forms hypothesis models that fit the specified motion dynamics. At every timestep, the

following four tasks are performed, as shown in Figure 3.2.
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Model propagation: Existing models are propagated forward with nearly constant jerk

motion dynamics. The new scan of measurements are classified as inliers or outliers to each

predicted model position based on Euclidean distance. Measurements within the inlier region

defined by a circle of radius τR are classified as inliers.

Model initialization: For each measurement that is an outlier to all models, a RANSAC-

based initialization step is performed to find models that fit nearly constant velocity dynam-

ics. Only the best RANSAC hypothesis model is kept.

Model update: At the end of each timestep, each model uses its associated inliers to

perform a Kalman update.

Model elevation: A model is elevated to a track once it has survived τT iterations without

having more than τCMD consecutive missed detections. This step is also where models with

poor support are pruned and models with similar positions are merged if within τx and τy

of each other.

R-RANSAC’s strength lies in its ability to initialize new hypothesis models from noisy

data and subsequently manage those models without operator intervention. This allows the

use of computationally cheap computer vision algorithms with less precision. Additionally, R-

RANSAC is not strictly a computer vision algorithm; it can filter measurements from diverse

sensor modalities [15]. The work of fusing different measurement sources in R-RANSAC is

currently being investigated. For more information about the R-RANSAC derivation we

refer the reader to [11].

3.2.2 Visual-Measurement Front End

In this work, R-RANSAC receives data from a visual-measurement front end. The vision

processing is done with a calibrated camera in a three-step pipeline to (i) find feature corre-
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(a) KLT Tracking (b) Homography

(c) Moving Features (d) Tracking Results

Figure 3.3: The three steps (a)-(c) of the visual measurement front-end with the resulting tracks
(d) from R-RANSAC. Images are taken from sequence run2a. Feature correspondences from (a)
are used to estimate a homography. Note how the homography-compensated difference image in
(b) masks out the feature motion resulting from camera motion and exposes independently moving
objects.

spondences between images, (ii) compute a homography, and (iii) detect true object motion.

The input video rate is controlled by the frame stride parameter which dictates how many

frames to skip. For example, with incoming video at 30 fps, stride = 3 results in 10 Hz

processing.

(i) Feature management: At each timestep k, features from the last image Xk−1 are prop-

agated forward into the current image as X+
k−1 using optical flow. Feature correspondences

(Xk−1, X
+
k−1) are sent as input to the next step in the pipeline for further processing. A

new set of features Xk are then found using the Shi-Tomasi corner detection method for
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the current image Ik. These features will be propagated on the next iteration. This step is

known as Kanade-Lucas-Tomasi (KLT) tracking and is depicted in Figure 4.4a.

(ii) Homography generation: Using the feature correspondences (Xk−1, X
+
k−1) from the

KLT tracker, a perspective transformation H known as a homography is estimated using a

RANSAC-based scheme. This step is crucial for moving platform tracking because it allows

the set of features Xk−1 and Xk to be represented in the same coordinate frame through

image registration. The quality of a homography estimation between camera views can be

visualized via difference imaging (see Figure 4.4b), defined as

Dk = Ik − I+
k−1 = Ik −HIk−1. (3.1)

Note that the R-RANSAC visual tracker only makes use of KLT features and that the

difference image Dk is only computed when assessing the homography estimation quality.

(iii) Moving object detection: Equipped with a homography and a set of feature corre-

spondences, the velocity of each of the feature points can be calculated as

V = X+
k−1 −HXk−1. (3.2)

If the homography estimate is good, then the velocity of static features will be nearly

zero, leaving behind the motion of independent objects only, as shown in Figure 4.4c. Mea-

surements (zj = [x, y, vx, vy]>) of independently moving objects are defined as feature points

that have a velocity magnitude within predefined thresholds, given by

Z = {(xi, vi) ∈ X+
k−1 × V : τvmin ≤ vi ≤ τvmax}.
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This scan of measurements is then given to R-RANSAC to estimate the position of targets.

Figure 4.4d shows the tracking results.

Note that the calibration parameters of the camera are used to undistort the features

extracted in step (i). Further, the camera matrix is used to project features from 2D pixel

space to the normalized image plane in 3D space where coordinates are normalized such that

the depth is unity. This results in tracker parameters that are less sensitive to differences in

calibrated cameras and allows tuning to be done in more intuitive units, as described below.

3.3 Altitude-Dependent Tuning

Track continuity is an important attribute of situationally aware systems. This attribute

implies that moving targets maintain a unique track ID throughout its lifetime. As the aerial

vehicle changes altitude, objects will change in size with respect to the camera field of view.

This can cause tracks to fragment into multiple IDs.

To maintain track continuity during a UAS descent, we propose using the vehicle altitude

to tune parameters of the R-RANSAC visual tracking system. The relevant tuning parame-

ters for R-RANSAC are the inlier region τR and the absolute difference threshold for model

merging, τx and τy. The visual front-end feature velocity thresholds τvmin and τvmax are also

tuned during flight. Denote the UAS altitude as h. The parameters are then

τR = s

2h ; τx = τy = dmerge

h
(3.3)

τvmin = vmin

h
; τvmax = vmax

h
, (3.4)
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where the tuning parameters are: s, the object size in meters; dmerge, the distance for model

merging in meters; vmin and vmax the minimum and maximum target velocities in meters per

second.

3.4 Hardware Demonstration

The R-RANSAC visual tracker software with altitude-dependent tuning is demonstrated

in real time during four flight tests. A GPU implementation is discussed that enhances the

tracking ability of the algorithm. The flight scenario is described, along with performance

metrics for multiple object tracking.

3.4.1 GPU Implementation

The most computationally expensive portion of the R-RANSAC visual tracker is the KLT

optical-flow feature tracking. Leveraging OpenCV libraries allowed for a GPU implementa-

tion of the visual front end. Although able to run on mobile CPU machines, using a GPU

gives the visual tracker extra processing time between each frame, allowing more features

to be extracted at a higher frame rate (i.e., lower stride). It also allows processing time for

higher level functions such as mapping, localization, and path planning.

An increase of feature correspondences between frames allows for a more robust homog-

raphy estimation process. A homography describes the perspective transformation of a plane

from one view to another. In low-altitude scenarios there is often more depth in the scene

from tall structures and trees, causing parallax and making it more difficult to find a single

plane to describe the entire image. However, moving objects are most often found on local

planes (e.g., streets, grass, etc). With more feature points used in the homography estima-

tion process, there will be a higher likelihood of choosing the local plane of the targets and

rejecting the parallax points as outliers. This increases the ability of the visual front end to

maintain detection of independent object motion.
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Using the flight test data, we perform a comparison of real-time tracking efficiency on

various CPU and GPU platforms. Efficiency is expressed in terms of utilization, which is

measured per frame as the ratio of time spent processing to total time available ( 1
fps).

3.4.2 Flight Scenario

The selected sUAS for testing is the 3DR Y6 multirotor with an onboard NVIDIA Jet-

son TX2, as shown in Figure 4.7. Four flight tests were performed to demonstrate the

R-RANSAC visual tracker in real-time. Each scenario lasted 2 minutes starting at an altitude

of 122 meters and ending at 20 meters. The descent was controlled by four pre-programmed

waypoints resulting in a 45◦ descent. The multirotor stops at each waypoint for 10 seconds.

During the descent, targets move at various rates in the camera field of view. Using the

Robot Operating System (ROS), all stages of the visual tracking system are recorded, includ-

ing vehicle state and tracking results. ROS manages the initialization and communication

of the software as soon as the flight computer is powered on.

3.4.3 Performance Metrics for Multiple Object Tracking

To measure the performance of multiple object tracking, we use the CLEAR MOT met-

rics, MOTP and MOTA [47]. These metrics provide an overall performance measure of

tracker precision (MOTP) and accuracy (MOTA). MOTP measures the ability of the tracker

to precisely estimate the true position of objects. In this work, an intersection-over-union (IOU)

ratio of bounding boxes is used; thus, a MOTP score of 1.00 represents perfect precision.

MOTA gives a measure of how well the tracker detects objects and their trajectories, be-

ing penalized for false positives, track mismatches, and missed detections. A given track is

associated with ground truth if there is at least 10% overlap (IOU) between bounding boxes.
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Figure 3.4: 3DR Y6 multirotor used in hardware demonstration. The Pixhawk autopilot runs
APM:Copter firmware. The camera has a resolution of 800× 600 at 30fps and is mounted at a 45◦
angle.

In addition to the CLEAR MOT metrics, we provide a measure of track coverage for each

ground truth object in the flight test. It is defined as the ratio of total frames tracked to

total frames present (and moving); thus, it is a means of breaking down the MOTA score

to each object. False positive (FP) coverage is defined as the ratio of false positives to the

number of frames in the sequence.

To calculate these metrics, ground truth is required. Flight video was manually annotated

using a VATIC-inspired JavaScript implementation2 [48].
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3.5 Tracking Results

3.5.1 Tracking Performance

The results of the CLEAR MOT tracking analysis are found in Table 3.1. The arrows in

the heading indicate if low (↓) or high (↑) ratios are preferred. The overall results for each

test flight sequence are given as well as a breakdown according to alitude ranges dictated

by the four waypoints (122 m, 84 m, 53 m, 20 m). Targets 1–3 are people and target 4 is

a small RC vehicle. Runs 1 and 2 are smoother and more visually consistent, while runs 3

and 4 are more difficult because of harsh lighting, strong winds, and many strong edges in

the scene. This difficulty is reflected in the MOTA and MOTP scores.

Note that scores tend to improve as the altitude decreases. This is expected because

moving objects have more detail in the frame, allowing more features to be extracted and

tracked. We expect that scores would improve further if we employed a feature parallax

detection and rejection scheme.

For the smoother video in runs 1 and 2, the visual tracker performs very well. This is

in contrast to the erratic, wind-induced camera motion in runs 3 and 4. We note that the

most apparent difference in the two pairs of sequences is that runs 1 and 2 tended to have

the targets in the middle of the frame while the targets were more often on the edge of the

frame in runs 3 and 4. This caused the targets to frequently move in and out of the camera

field of view, incurring track fragmentation and missed detection costs. We suggest that

using an object detection method (feature descriptors, template matching, etc.) or tracking

measurements in the 3D world coordinate frame would mitigate these issues.
2Source code can be found at github.com/plusk01/vatic.js
3Video results can be found at https://youtu.be/UIlvXSdVvqA
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3.5.2 GPU vs CPU Utilization

Figure 3.5 shows the results of running the four video sequences on three different ma-

chines while holding the parameters constant. Each machine has an associated pair of bars,

with the left representing CPU-only and the right GPU-enabled. The i7Mobile is a Gi-

gabyte Brix computer with only a CPU. An i7Desktop machine is listed for comparison.

Each bar breaks down how much time is spent in each part of the tracking pipline during

one period ( 1
fps). The algorithm is running in real-time if utilization is under 100%.

Note that the i7Mobile computer can on average run in real-time with a frame stride

of 3; however, there is almost no extra processing time for higher-level tasks. The TX2 on

the other hand performs comfortably in real-time for strides of 1, 2, and 3. We choose to

process at stride = 3 (10 Hz) so that there is more target motion between frames at higher

altitudes and so there are plenty of computational resources available for future higher-level

tasks.

3.6 Conclusion

In this paper we have demonstrated a visual multiple target tracker running in real

time and onboard a descending multirotor. With a robust target tracking solution, the

situation awareness of autonomous vehicles is increased. A utilization analysis shows that

extra processing time is available for tracking improvements and higher-level tasks such as

path planning and control. Future work will include parallax compensation, world frame

tracking, and trajectory optimization for ground target avoidance during landing.
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Figure 3.5: R-RANSAC visual tracker utilization for frame strides of 1, 2, and 3. Each of the three
bar pairs represent a single machine. The left bar in each pair shows the utilization on CPU-only
tracking and the right bar shows the utilization with the GPU enabled (if available). The tracker
is running in real time if utilization is below the dotted line (100%).
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Chapter 4

Safe2Ditch: Emergency Landing for Small Unmanned Aircraft Sys-

tems1

4.1 Introduction

Technology and computing capabilities continue to allow small unmanned aircraft sys-

tems (sUAS) to be used in sophisticated applications such as infrastructure monitoring,

medical services delivery, search and rescue, natural disaster assessment, package delivery,

atmospheric observation, etc. Small UAS are well suited for these tasks because of their low

cost, quick deployment time, and ability to perform hazardous work. However, to fully real-

ize the economic and societal benefits of these civil and commercial applications, a structure

must be put in place to integrate sUAS into the National Airspace System (NAS) [49].

Many efforts are currently being made in this regard, both in terms of policy and tech-

nology [50, 51, 52]. Most notably is the UAS Traffic Management (UTM) effort being led by

NASA and the United States Federal Aviation Administration (FAA) [5]. UTM is a traffic

management ecosystem for low-altitude (below 400 ft, 120 m) sUAS operations in uncon-

trolled airspace. Its purpose is to connect UAS operators with real-time data from other

UAS in the vicinity, weather and terrain data, and an overall NAS regulator (e.g., the FAA).

This architecture aims to maximize information flow between users, giving flexibility to op-

erators and their sUAS operations when working in low-risk or isolated areas and providing

support and structure when multiple sUAS operate in densely populated areas.
1This chapter is a modified version of the paper submitted to the Journal of Intelligent & Robotic Systems,

written by Parker C. Lusk, Patricia C. Glaab, Louis J. Glaab, and Randal W. Beard [27]
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Safe2Ditch engaged

Initial Ditch Site

Revised Ditch Site
Commitment Altitude,
rerouting impossible

below this point

Motion detected in
initial ditch site,

rerouting

sUAS Mission

Motion detected,
vision assisted landing 
takes control of vehicle

Figure 4.1: Notional flight scenario in which Safe2Ditch would be used.

Integration into the NAS as suggested by UTM requires that unmanned systems flying

beyond visual line of sight (BVLOS) have much more capable on-board autonomy—not only

to carry out specific missions, but to enable safety critical components such as sense and

avoid, forced landing, operation in GPS degraded environments, and communication-loss

mitigation. These safety concerns must be fully addressed and standardized across sUAS

in the NAS. The main contribution of this paper is an emergency landing scheme for sUAS

operating at low-altitudes in the NAS.

In manned aircraft, emergency landing is a crucial aspect of flight safety. When technical

problems such as engine failure or structural damage occur, the pilot must quickly select a

suitable landing site that might not be at a designated airstrip. Using communication with

air traffic control, a safe landing zone is chosen that is clear of people and other obstacles.

In the case of uncontrolled general aviation airspace, such as FAA Class G airspace, it is the

pilot’s responsibility to visually locate a safe landing site clear of people and other obstacles.

Performing forced landing maneuvers at low-altitude for unmanned aircraft requires the on-

board system to be able to perceive the environment and make decisions on a landing site

autonomously. Additionally, the size, weight, and power constraints of sUAS prevents the

use of double- or triple-mode redundancy as is common in manned aircraft. This results in

the need of a quick reaction time for sUAS emergency landing systems.
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A successful model for autonomous interaction with the environment can be found in

the sensory-based decision making process known as situation awareness [6]. Originating in

the military aircraft pilot community, situation awareness is defined as the human process

of perceiving details in the environment, comprehending how those details affect the current

goal, and projecting that comprehension to what will happen in the near future [7]. This

process of situation awareness allows human operators to make critical decisions in a timely

and effective manner. Similarly, adding a sense of situation awareness in autonomous vehicles

allows them to operate effectively in dynamic environments [8]. For example, McAree and

Chen [9] discuss adding artificial situation awareness to UAS by using automated dependent

surveillance-broadcast (ADS-B) to cooperatively sense other agents while landing at prepared

sites.

To better discuss the need for increased autonomy and situation awareness, we define the

sUAS emergency landing problem in the following series of steps.

1. Event detection. During normal operation of an sUAS mission, an emergency event

may be received from various sources. In the context of NAS integration, the UTM

system may broadcast a land directive for the purposes of aircraft deconfliction or other

safety reasons. Other examples of emergency events include vehicle fault detection such

as low power, damaged motors, etc.

2. Landing site selection. During an emergency, the availability of a designated landing

site is unlikely. In that case, safety systems for sUAS must be able to identify a suitable

location for landing or crashing. This could include locations such as building tops,

trees, lakes, parks, or roads.

3. Path planning. Once a new emergency landing site is selected, an efficient path to

the desired location must be designed. Examples include optimizing trajectories for

power consumption, time to land, or observability constraints. If a sense-and-avoid
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system is present, a reactive path planning scheme may be used to safely guide the

vehicle through air traffic. Additionally, a 3D obstacle map could be used to remain

within UTM-cleared airspace or to plan paths around static obstacles such as buildings

or trees.

4. Robust control. Depending on the vehicle and the nature of the emergency event,

specialized autopilot routines may need to be used to maintain maneuverability of

damaged vehicles. Additionally, it is the goal of the controller to ensure that paths

created by the planner are followed.

5. Tactical maneuvering. As the sUAS makes its final approach to the impromptu

landing site, there are likely to be dynamic ground obstacles such as cars, animals, and

people that were not accounted for in the path planning stage. The goal of tactical

maneuvering is to react to these non-cooperative ground obstacles using on-board

sensing so that the vehicle can land without causing harm to the ground obstacles or

itself. Depending on the population density of the chosen landing site, this step of

emergency landing can be the most challenging in regards to safety and is known as

the “last 50 feet” concern by UTM [5].

Safe2Ditch is a concept for an on-board crash management system that continuously

monitors vehicle health and mission objectives. This paper focuses on real-time landing site

selection and builds upon [27] to introduce visual situation awareness into the site selection

process. While other methods discussed in Section 4.2 have designed landing site selection

schemes, this paper incorporates visual tracking so that the current state of potential ditch

sites can be assessed while still at higher altitudes. Simulation and hardware experiments

demonstrate the ability of Safe2Ditch to quickly select the best landing site using visual

tracking.
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The paper is organized as follows. Section 4.2 reviews current solutions relevant to forced

landing of small unmanned aircraft systems. Section 4.3 discusses each of the emergency

landing steps in the context of the Safe2Ditch architecture. Section 4.4 discusses the vision

processing and target tracking algorithms that were designed and implemented to inform

Safe2Ditch about obstacle motion on the ground. In Section 4.5, the Safe2Ditch system is

tested in simulation and in hardware. A discussion of the results are also given. We conclude

with final thoughts and next steps in Section 4.6.

4.2 Related Work

4.2.1 Emergency Landing

One of the earliest fully-integrated emergency landing systems to be flown on-board an

unmanned aerial vehicle was by Scherer et al. [29]. In real-time, the system demonstrated

the ability to detect, select, and navigate a full-scale unmanned helicopter to an unprepared

landing site. Using lidar for perception and on-board computing resources, the system is

able to build an online 3D point cloud of the terrain surrounding the full-scale unmanned

helicopter. This terrain model is then used to evaluate how well a 3D model of the landing

gear fits at different locations. Once the contact of the landing gear to the terrain model

is nearly level, the landing site is determined and the helicopter autonomous navigates and

lands there.

In Mejias and Fitzgerald [30], the authors developed a visual landing site detection sys-

tem using a method based on image segmentation. Applied to video data from a Cessna

172 flying at approximately 1500 ft (450 m) above ground level, the detection system is able

to find large potential landing sites. Warren et al. [53] use a similar system that incorpo-

rates digital elevation models (DEM) and inertial measurement unit (IMU) data to perform

dense 3D reconstruction using a structure-from-motion technique. Shen et al. [54] also de-

veloped a visual landing site detection system for manned fixed-wing flight to assist pilots
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in choosing an appropriate landing site, but was only tested on simulated data. Note that

the aforementioned works do not explicitly handle cases of motion in the potential landing

sites.

While these automated systems were successful for larger aircraft, in this paper we target

small UAS with limited size, weight and power constraints. Additionally, the operational

envelop that we are targeting is below 400 ft (120 m) and with only one minute to land

once the emergency is triggered. Eendebak et al. [55] demonstrates a vision-based landing

site selection on post-processed video acquired from a handheld camera at 100 ft (30 m).

Using a background estimation filter, foreground elements are exposed and a graph-cut-based

segmentation method is used to create a 2D obstacle map which allows the safest landing

site to be chosen. However, the use of background estimation and subtraction requires slow,

smooth flight and the sUAS must hover in place while potential landings sites are being

imaged. In the work of Mackay et al. [56], landing site identification for multirotors is

proposed using a plane-fitting algorithm on RGB-D point-cloud data.

Existing commercial solutions are based heavily on parachute technology, such as ParaZero

[57]. These passive systems are inexpensive and effective at ensuring a safe descent, but leave

the sUAS vulnerable to wind and crippled in cooperative sense-and-avoid capability. Other

sUAS simply rely on the human operator to steer the drone to a clear landing zone as it

slowly descends [58].

Research in other facets of the sUAS emergency landing problem have also been pro-

gressing. Di Donato and Atkins [59] proposed enhancing the site-selection process with the

addition of non-traditional information such as real-time mobile phone activity to assist in

avoiding densely occupied areas. In contrast, our work assumes a database of pre-selected

ditch sites and focuses on refining site selection based on real-time motion. The work of

Coombes et al. [60] provides a landing site reachability analysis of a fixed-wing sUAS that is
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gliding due to engine failure. Mueller and D’Andrea [61] demonstrate fault-tolerant control

of a quadrotor with complete loss of various propellers.

4.2.2 Visual Target Tracking

Visual target tracking is an active area of computer vision research [62, 32]. Three

defining characteristics of visual trackers are (1) their ability to track from a stationary versus

moving camera, (2) their ability to track single versus multiple objects, and (3) detection-

free tracking which must be manually initialized versus tracking-by-detection which can

self-initialize tracks. In this paper, we use an on-board visual multiple object tracker that

can self-initialize tracks moving independently from the vehicle’s motion.

In a survey of vision-based techniques used on UAS, Kanellakis and Nikolakopoulos

[63] discuss various works focusing on aerial surveillance and tracking of ground objects.

Rodríguez-Canosa et al. [41] use Parallel Tracking and Mapping (PTAM) for motion esti-

mation which is then used to create an artificial optical flow field. The difference between

Lucas-Kanade optical flow and the artificial flow field exposes dynamically moving objects;

however, this technique requires initialization using a marker map and may struggle to

detect objects moving with similar velocity to the multirotor. Li et al. [44] successfully

track other sUAS for sense-and-avoid applications in post-processed aerial footage; how-

ever, they assume targets are non-deformable which limits the types of objects that can be

tracked (e.g., non-biological objects). Jiang and Cao [43] are able to track multiple objects

in post-processed aerial video using detections based on background modeling, but do not

use Bayesian filtering for track management. Teutsch and Krüger [45] also track multiple

objects in post-processed aerial videos and demonstrate traffic surveillance and tracking from

a constant altitude. Their approach is most similar to the tracking pipeline used in our work,

but assumes constant altitude stable flight over structured environments, which results in
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smooth video input. Finally, Thomas et al. [38] demostrate how the output of a single object

visual tracker can be used to control a quadrotor to follow a single moving object.

4.3 Safe2Ditch Overview

Safe2Ditch is a sUAS crash management system. Its goal is to provide emergency landing

capability to either rotorcraft or fixed-wing autonomous vehicles. By communicating with

the vehicle’s sensors and autopilot, the set of core Safe2Ditch algorithms are able to react

to emergency situations. To allow widespread access to the safety that this system provides,

Safe2Ditch is designed as a flexible framework capable of interfacing with a wide variety of

commercial off-the-shelf (COTS) components.

4.3.1 Architecture

To manage each of the emergency landing steps as defined in Section 4.1, Safe2Ditch

has a number of subsystem components as shown in Figure 4.2. This paper addresses and

demonstrates the six components shaded with light grey, while health monitoring and tactical

maneuvering are left for future work. The function and interdependence of each subsystem

is described below in the context of the notional emergency scenario depicted in Figure 4.1.

As the system manages forced landings and crashes, the vehicle’s priorities are to

1. avoid people,

2. avoid damaging property, and

3. avoid damaging itself.

We assume that once Safe2Ditch is engaged, the vehicle is only able to descend or maintain

altitude.
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Figure 4.2: Safe2Ditch system architecture. This paper addresses and demonstrates the six light
grey components. When Safe2Ditch is not engaged, the nominal mission waypoints are passed
unchanged.
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4.3.1.1 Health Monitoring

The Safe2Ditch system is continuously running for the duration of the sUAS mission.

During normal operation, Safe2Ditch is simply monitoring vehicle health and communication

channels that may relay an emergency land directive. For example, the battery or fuel

required for the mission completion may be insufficient due to unexpected headwinds, a fuel

leak, or poor battery health. Alternatively, the vehicle state determined by the autopilot may

deviate significantly from the internal dynamic model of the health monitoring systems. If

either of these or other performance anomalies occur, the health monitoring system engages

Safe2Ditch to manage the emergency.

4.3.1.2 Ditch Site Selection

Once Safe2Ditch is engaged, a ditch site is selected. This step is managed by the Ditch

Site Selector subsystem, which is connected to the ditch site database (DitchDB) and the

visual tracking subsystem as shown in Figure 4.2. A pre-loaded database provides optional

ditch site locations with key descriptors. The current position of the sUAS and the estimated

time to land from the health monitoring system inform which ditch sites are within range. If

no sites are in range, the vehicle immediately begins its descent and uses all of its remaining

energy for tactical maneuvering. If pre-vetted sites are within range, triaging by the Ditch

Site Selector (DSS) selects the optimal site based on predicted vacancy, size of the site, terrain

factors, and other weighted factors. Specific values for the weight factors are a subject of

ongoing research. The flight prototype places the highest value on predicted vacancy because

the rotorcraft has no runway length requirement and because the test range is outfitted with

many ditch site options within the vehicle’s range. Simulation runs using larger real-world

scenarios may indicate more emphasis on range to conserve energy for tactical maneuvering.

Once the ditch site is selected, its location is passed to the path planner.
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Figure 4.3: Annotated visualization of a ditch site (green). The Safe2Ditch path planner creates
a TOD point (red) so that imaging of the ditch site for obstacles is maximized.

The use of a pre-loaded database has precedence in commercial aviation where airport

and airspace information is pre-loaded for use by the flight management system (FMS) for

the planned region for a given flight. This allows the system to have a continually updated

set of information, and provides opportunity for governance. For example, future databases

could provide optional ditch sites as well as avoidance areas.

4.3.1.3 Path Planning

Using the position of the selected ditch site, the path planner generates an efficient path

for landing. An efficient path minimizes the landing time and maximizes the amount of time

that the ditch site can be imaged by the on-board camera. By increasing the amount of time

that the camera can image the ditch site, the visual tracking subsystem can better inform

the Ditch Site Selector of any motion in potential ditch sites. Therefore, for a multirotor, an

efficient path can be achieved by spending the majority of the landing time descending at

an angle equal to the camera mounting angle. As discussed in Section 4.5, the vehicle used

for flight tests has a camera that is mounted at a 45-degree angle toward the ground.

To maximize the time descending at the optimum imaging angle, an intermediate way-

point is inserted between the vehicle’s current position and the ditch site. This waypoint
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becomes the top-of-descent (TOD) point, as shown in Figure 4.3. For the 45-degree camera

mount, this is conveniently located at a distance equal to the vehicle’s current altitude.

4.3.1.4 Tactical Maneuvering

As the vehicle descends toward the selected ditch site, newly detected obstacles in the

landing area may cause Safe2Ditch to consider another ditch site as better suited for landing.

However, at some altitude, the sUAS will not have enough energy to reroute to other ditch

sites and must commit to land. This commitment altitude is calculated by comparing the

remaining energy of the sUAS with the distance needed to reach other ditch sites. If the sUAS

does not enough power to reach another ditch site, the better-suited ditch site is disregarded

and the sUAS continues its path to the original location. In these cases, Safe2Ditch is forced

to choose a suboptimal ditch site that contains moving ground objects. To maintain safety

and prevent harm to the moving ground obstacles, Safe2Ditch alters its 45-degree straight-

line path and begins to use a control scheme that tactically maneuvers around moving ground

obstacles in the ditch site. This vision-based control scheme is left as future work.

4.3.1.5 Visual Tracking Subsystem

The visual tracking subsystem is made up of the visual front end and the Recursive-

RANSAC blocks shown in Figure 4.2. Using only the vehicle’s on-board camera, the visual

tracking subsystem can estimate the position and higher-order dynamics of moving ground

obstacles, as well as provide awareness of non-planar ground objects such as fences or trees.

This image-based tracking information is then geolocated and used to inform the Ditch Site

Selector of motion in the ditch site. Additionally, the image-based tracking information

could be used for vision-based control techniques to perform tactical maneuvering. The

visual tracking and geolocation components are discussed in more detail in Section 4.4.
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(a) KLT Tracking (b) Homography (c) Moving Features (d) Tracking Results

Figure 4.4: The three steps (a)-(c) of the visual measurement front end with the resulting tracks
(d) from R-RANSAC. Images are taken from video processed on-board a descending multirotor.
Feature correspondences from (a) are used to estimate a homography. Note how the homography-
compensated difference image in (b) masks out the feature motion resulting from camera motion
and exposes independently moving objects.

4.4 Visual Multiple Target Tracking

To enable autonomy in dynamic environments, a visual tracking subsystem is integrated

into the Safe2Ditch architecture. This visual target tracking component plays two roles: (1)

to inform the Ditch Site Selector (see Section 4.3.1.2) as it is scoring ditch sites, and (2)

for tactical avoidance during the final landing maneuver. The work presented in this paper

builds on our previous work of designing a vision-based multiple target tracking system for

use on a descending platform [27].

The visual target tracking subsystem allows tracking of multiple moving targets from

the on-board camera of the sUAS. Combining a visual measurement source with an online

estimation back end known as Recursive-RANSAC, a robust tracking filter is created that

requires no operator intervention to initialize or manage target tracking. Target tracks

produced by Recursive-RANSAC are then geolocated and projected onto a flat-earth model

to estimate the 3D position of the visually tracked targets.

4.4.1 Camera Geometry

To aid in downstream tasks, the measurement processing of the visual tracker is performed

using normalized image coordinates as opposed to pixels. Consider the geometry of a pinhole
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Figure 4.5: Geometry of a pinhole camera with both the pixel plane Fpx and the normalized
image plane Fim shown. The normalized image plane is found where the focal length f = 1 and
the origin is aligned with the principal point.

camera model, as shown in Figure 4.5. For simplicity of the following discussion, the camera

frame Fc is identified with the inertial frame Fi. Suppose that the point P exists in 3D space

and can be expressed in the inertial frame as P i =
[
xi yi zi

]>
. The perspective projection

equations for imaging the point P are given by

u = fxim + cx = f
xi

zi
+ cx (4.1)

v = fyim + cy = f
yi

zi
+ cy, (4.2)

where u and v are respectively the x and y pixels, f is the focal length in pixels, cx, cy are the

pixel offsets to the camera’s principal point, and xim, yim are the coordinates of P expressed

on the normalized image plane. Note that the focal length and the principal point offsets

may be found via camera calibration. In homogeneous coordinates, the normalized image

coordinates can be written as the 3-vector

pim =
[
xim yim 1

]>
. (4.3)
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Therefore, each u, v pixel received from the camera sensor can be transformed into the

normalized image plane using equations (4.1) and (4.2).

The use of normalized image coordinates enables parameter tuning to be generalized to

different visual systems and different scenarios, using the camera calibration of each camera

to calculate the normalized image coordinates. In particular, this allows altitude-dependent

tuning of the visual tracking algorithm as presented in [27]. Additionally, unit bearing vectors

can be constructed from the camera data by normalizing pim. These bearing vectors are used

in this work for target geolocation, as discussed in Section 4.4.4.

4.4.2 Visual Measurement Front End

The purpose of the visual measurement front end is to process incoming video data and

generate measurements that can be fed to the Recursive-RANSAC Tracker. Because of the

robustness of the Recursive-RANSAC algorithm, we value many low-quality measurements

over few high-quality measurements. Motivated by this heuristic, the vision processing is

performed with a calibrated camera in a three-step pipeline to (i) find feature correspon-

dences between images, (ii) compute a homography, and (iii) detect true object motion.

Each of these steps are briefly described below. More information can be found in [27].

(i) Feature management: At each timestep k, features from the last image Xk−1 are prop-

agated forward into the current image as X+
k−1 using optical flow. Feature correspondences

(Xk−1, X
+
k−1) are sent as input to the next step in the pipeline for further processing. A

new set of features Xk are then found using the Shi-Tomasi corner detection method for

the current image Ik. These features will be propagated in the next iteration. This step is

known as Kanade-Lucas-Tomasi (KLT) tracking and is depicted in Figure 4.4a.

(ii) Homography generation: Using the feature correspondences (Xk−1, X
+
k−1) from the

KLT tracker, a perspective transformation H known as a homography is estimated. This
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step is crucial for tracking on-board a sUAS because it allows the set of features Xk−1 and

Xk to be represented in the same coordinate frame through image registration. The quality

of a homography estimation between camera views can be visualized via difference imaging,

as shown in Figure 4.4b. Note that the visual tracking subsystem only makes use of KLT

features and that the difference image is only computed when assessing the homography

estimation quality.

(iii) Moving object detection: Equipped with a homography and a set of feature corre-

spondences, the velocity of each of the feature points can be calculated as

V = X+
k−1 −HXk−1.

If the homography estimate explains the motion of static features in the image plane well,

then the velocity of static features will be nearly zero, leaving behind the motion of inde-

pendent objects only, as shown in Figure 4.4c. Measurements (zj = [x, y, vx, vy]>j ∈ Zj) of

independently moving objects are defined as feature points that have a velocity magnitude

within predefined thresholds, given by

Zk−1 = {(xi, vi) ∈ X+
k−1 × V : τvmin ≤ vi ≤ τvmax}.

This scan of measurements is then used by Recursive-RANSAC to estimate the position,

velocity, and acceleration, and jerk of targets.

4.4.3 The Recursive-RANSAC Tracker

Recursive-RANSAC is an online estimation algorithm capable of tracking an arbitrary

number of objects in clutter [11, 46]. Measurements are received in the surveillance region

R of the system, where R ⊂ R2 in this work. Recursive-RANSAC uses the random sample

consensus (RANSAC) algorithm to quickly initialize hypothesis models that best fit the
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normalized
image plane

Figure 4.6: North-Down view of the geolocation problem from a multirotor. We would like to
find an estimate of ptgt expressed in the inertial frame. Given piuas, the camera’s attitude and a
normalized line-of-sight vector ˆ̀c from the camera, pitgt can be calculated.

current measurements in a maximum-likelihood sense. Once a model is initialized, a bank

of Kalman filters is used to propagate each model forward based on nearly-constant jerk

kinematics and a data association step as new measurements are received. The tracks found

by Recursive-RANSAC can be seen in Figure 4.4d.

The benefits of using Recursive-RANSAC are found in its ease of implementation, lightweight

computational requirements, robustness in rejecting outliers, and its ability to initialize and

manage models without an operator [12].

4.4.4 Target Geolocation

Once Recursive-RANSAC produces target tracks, the position puas of the sUAS is used

to estimate their inertial position. Consider the target ptgt shown in Figure 4.6. Using the
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geometry of the camera and a flat-earth model of the inertial frame, the range to the target

can be estimated [64].

Given a target track pim expressed in the normalized image plane as in equation (4.3), a

normalized line-of-sight (LOS) vector expressed in the camera frame can be constructed as
ˆ̀c = pim

|pim| . Using the unit LOS vector ˆ̀c and the height above ground level h of the sUAS,

the objective is to estimate the inertial position of the target assuming a level ground plane.

The inertial position of the target can be written as

pitgt = piuas + Lˆ̀i, (4.4)

where L is the range from the sUAS to the ground target. Because cameras are bearing-only

sensors, the range must be estimated. First, we construct a rotation matrix that allows us

to express all of the quantities in the same basis. This rotation matrix is composed of the

rotation from the camera Fc to the body Fb and the rotation of the body to the inertial

frame Fi. Therefore, the LOS vector in the inertial frame is

ˆ̀i = Ri
bR

b
c
ˆ̀c, (4.5)

with Ri
b, R

b
c ∈ SO(3). The range L can be calculated using the cosine of γ, the angle between

the inertial ki-axis and the unit LOS vector ˆ̀i. Using the following equality

ˆ̀i · ki = cos γ = h

L
, (4.6)
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Figure 4.7: The 3DR Y6 multirotor used in hardware experiments. The Pixhawk autopilot runs
APM:Copter firmware. The camera has a resolution of 800 × 600 at 30 fps and is mounted at a
45-degree angle.

the range can be written

L = h
ˆ̀i · ki

. (4.7)

Thus, the inertial position of the target at time t is given by combining equations (4.4), (4.5)

and (4.7). The inertial position of moving ground obstacles can then be used to inform the

Ditch Site Selector during an emergency landing, as discussed in Section 4.3.1.2.

Table 4.1: Hardware details

Component Description

Platform 3DR Y6
Autopilot 3DR Pixhawk with APM v3.5.4
Sensors GPS, IMU, barometer, magnetometer
RGB Camera 800× 600 @ 30 fps, HFOV ≈ 34◦

Processor NVIDIA Jetson TX2
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4.5 Experimentation

To demonstrate the obstacle-aware Ditch Site Selection component of the Safe2Ditch

system, simulation and hardware experiments were performed. The multirotor used for

hardware tests is shown in Figure 4.7 with details in Table 4.1.

4.5.1 Implementation

The Safe2Ditch system is implemented in C++ and Python for real-time execution on-

board an NVIDIA Jetson TX2 embedded computer. Using the Robot Operating System

(ROS) [26] for message passing, each component can be designed, implemented, and tested

independently of each other. This allows for rapid experimentation and hardware validation

of the Safe2Ditch concept.

In addition to other standard software engineering concepts used in real-time applications,

the visual processing stage is implemented using CUDA routines to exploit the parallelism

inherit in image processing. The NVIDIA Jetson TX2 contain 256 low-power CUDA cores

that enables the use of this type of processing.

The Safe2Ditch system is able to communicate with the Pixhawk autopilot that is used

to control the multirotor and to estimate its current pose and velocity. This allows the

geolocation algorithm (see Section 4.4.4) and the Ditch Site Selector (see Section 4.3.1.2) to

access the needed inertial information about the vehicle.

4.5.2 Software-in-the-Loop Simulation

To perform successful hardware flight tests, it is important to simulate the integrated

system as best as possible. Using the ROS ecosystem with the Gazebo physics simulator, it

is possible to create a software-in-the-loop (SIL) simulation by executing the Pixhawk/APM

software on a desktop computer. This allows the same Safe2Ditch software that would run on

66



www.manaraa.com

-150 -120 -90 -60 -30 0 30 60

-30

0

30

60

90

y
 [

m
]

five nominal
mission waypoints

WP #1

home position

three
ditch sites

1

2

3

x [m]

Figure 4.8: Simulated environment at the NASA Langley Research Center, expressed in an ENU
coordinate frame. The five nominal mission waypoints are shown as blue dots, with the first
waypoint near (50 m, 20 m). The sUAS takes off from the home position and begins to follow
the waypoints in a counter-clockwise fashion. At some random time tengage, Safe2Ditch is engaged
and attempts to select ditch site 1, which has the highest priority in the DitchDB. Safe2Ditch
must manage landing safely and quickly in the presence of Nt randomly moving targets in the area
bounded by dashed lines. If a target is detected in ditch site 1, Safe2Ditch reroutes to the next
best ditch site, shown in yellow.
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the flight computer to be run in simulation. Using satellite imagery, the SIL is additionally

able to produce synthetic images of flight test locations with simulated people walking in

various ditch sites. Within the SIL environment, end-to-end emergency landing scenarios

are tested that exercise the Safe2Ditch components and increase confidence in effective flight

demonstrations.

The geographical location used in SIL simulations is the sUAS Testing Site at the NASA

Langley Research Center. The nominal mission starts with the sUAS taking off at the home

position and consists of flying counter-clockwise through five waypoints at an altitude of

60 meters, as shown in Figure 4.8. Three prioritized ditch sites are loaded into the DitchDB

and are also shown in Figure 4.8, with ditch site 1 being the first choice. Using this test

environment, a series of Monte Carlo simulations were run parameterized by the number

of moving targets, Nt ∈ {1, 2, . . . , 10}. The ith target is modeled as a simple unicycle with

kinematics

ẋi = vi cos(θi)

ẏi = vi sin(θi)

θ̇i = ωi

where vi(t) is linear velocity and ωi(t) is angular velocity. A waypoint-based path planner is

used to command each target to a sequence of desired positions (xdi , ydi ) using ωi(t) as the

control and letting vi(t) ≡ vi(0).

For each Nt ∈ {1, 2, . . . , 10},M = 200 trials were run to test the sensitivity of Safe2Ditch

with respect to the number of moving obstacles near the ditch site, Nt, the initial position

(xi(0), yi(0)) and initial velocity vi(0) of a target, and the time that the Safe2Ditch system

receives an emergency event, tengage. The initial position of the ith target is sampled from a

uniform distribution bounded by the area around the first ditch site as shown in Figure 4.8.
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Subsequent waypoints are sampled from this same distribution, (xdi , ydi ) ∼ U(−120,−60) ×

U(−30, 30). The velocity with which the target moves is chosen as vi(0) ∼ U(0.5, 2.5) and

tengage ∼ U(30, 70).

4.5.3 Monte Carlo Simulation Results

The following three metrics are used to evaluate simulation results:

1. Time to action, taction. This metric captures how many seconds it took the system

to detect an obstacle in the currently selected ditch site and then reroute to the next

best ditch site. Because the multirotor descends with a constant velocity of 2 m/s in

both the lateral and down directions, taction best describes the responsiveness of the

system. Responsiveness is critical for emergency landing systems because each passing

second can cause greater loss in controllability, energy, or altitude.

2. Rate of failure. A failure occurs if the multirotor lands in a ditch site with one or

more targets present. For the purposes of simulation, we consider landing to occur

once the multirotor descends to 5 meters. Additionally, we assume that agents would

not knowingly walk under a landing multirotor and in our results we ignore any agent

that is in the ditch site but not in the field of view of the camera. In the future, a

camera with a wider field of view or complementary sensor modalities could be used

to increase the detection region of Safe2Ditch.

3. Rate of false reroutes. As the sUAS descends toward the ditch site, it is possible that

the visual tracking system outputs false positives that cause the Ditch Site Selector

to unnecessarily reroute to another ditch site. Additionally, estimation error in the

geolocation algorithm could cause Safe2Ditch to misclassify tracks as being inside the

ditch site when the true target position is not.
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Figure 4.9: Distribution of taction. The inclusion of visual data allows Safe2Ditch to quickly
respond to non-cooperative obstacles. Once a moving obstacle is in the camera’s field of view and
in the ditch site, the median amount of time it takes to reroute to another ditch site is less than 5
seconds.

These metrics are shown in Figures 4.9–4.11. From Figures 4.9 and 4.10, we note that the

performance of Safe2Ditch is robust to a varying number of obstacles moving in and near

the ditch site. As expected, the higher the number of moving objects in and near a ditch

site, the more likely a reroute will occur (see Figure 4.11).

4.5.4 Hardware Flight Test

Sixteen flight demonstrations are performed to exercise and validate the vision-aided

Ditch Site Selection component of the Safe2Ditch emergency landing system. Three of the

flights are performed near Provo, UT with a mission altitude of 100 ft (30 m) and ditch site

radius of 13 ft (4 m). All other flights are performed at the NASA Langley sUAS Testing

Site, with six tests operating at 200 ft (60 m) and seven tests operating at 400 ft (120 m).

The ditch site radius of the tests performed at NASA Langley is 30 ft (9 m). Of the sixteen
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Figure 4.11: The rate at which Safe2Ditch rerouted to another ditch site because of visually
perceived motion in the original site. In all of the trials there no false reroutes occurred.
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flights, nine are performed with motion induced in or around the ditch site by either an

operator-driven RC car or a person wearing personal protective equipment. The other seven

flights have no motion induced in the ditch site to test for false positives.

Each flight scenario starts with a safety pilot controlling the takeoff phase and then trans-

ferring control to the autopilot to fly a predetermined mission with a number of waypoints.

Each flight test has slight variations in its predetermined mission, with altitudes differing

as noted above. At some time tengage during the execution of each mission, an emergency

event is generated and the Safe2Ditch system disrupts the mission operation and begins to

safely land the vehicle. Throughout the duration of the test flights where motion is induced,

targets are commanded to move with arbitrary trajectories and speeds inside of the ditch

site.

4.5.5 Hardware Results

In addition to the metrics used for simulation results (see Section 4.5.3), we analyze the

hardware data using the following metrics:

1. Time to track, ttrack. This measurements captures how quickly the visual system

detects and tracks moving obstacles. The difference between taction and ttrack measures

how long it took the Ditch Site Selector to consider the track as actionable and reroute

to another ditch site.

2. Altitude of reroute, hreroute. For hardware tests where a reroute is expected, hreroute

gives the altitude that the reroute occurred.

We present the data in Figure 4.12 from the 16 flight tests organized into three sets, broken

up by the nominal mission altitude: (i) 3 flights at 30 m, (ii) 6 flights at 60 m, and (iii) 7

flights at 120 m.
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As shown by ttrack in Figure 4.12, the visual multiple target tracker can quickly de-

tect and track targets at 120 meters and below. However, we can see from taction that the

Safe2Ditch system took more time to react to moving ground obstacles for the 120 meter

set. The greatest contributor to this latency in response time is the track geolocation algo-

rithm (see Section 4.4.4), which often produced estimates with an error between 5 and 10

meters. Because of this error, ground obstacles near the edge of the ditch site would often be

misclassified as being inside or outside. This misclassification caused a single false positive

during a flight from the 30 m test set. Six of the sixteen tests landed in the first selected

ditch site, with no failures.

We show the trajectories of two of the 120 meter mission altitude tests flown at NASA

Langley in Figures 4.13 and 4.14. Both tests start on the ground at the origin of a local ENU

inertial coordinate frame. The trajectory of the multirotor is shown in black, as it begins to

travel counter-clockwise about the nominal mission waypoints. When Safe2Ditch is engaged,

the color of the plotted trajectory matches one of the two ditch sites available to be selected.

In Figure 4.13, there is no motion in the primary ditch site and the vehicle successfuly lands.

In Figure 4.14, an agent moves around the primary ditch site, which is detected and plotted

as red. Once the track of the moving agent becomes actionable, Safe2Ditch reroutes to the

secondary ditch site, and the color of the plotted trajectory changes.

The red plotted points in both Figures 4.13 and 4.14 represent all tracks created by the

visual tracker, throughout all time. Note that in both figures, the visual tracker detects and

tracks false positives at various locations of the mission. These false positives are a result of

the parallax of caused by non-planar objects in the scene (such as trees, poles, and buildings)

and not the Recursive-RANSAC algorithm. Parallax is an effect where positions of objects

in a 3D scene differ when viewed from two different angles. Because cameras do not convey

depth information, the planar homography transformation that is discussed in Section 4.4.2

cannot compensate for non-planar motion. While this shows a weakness in the ability of the
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Figure 4.12: Results for 16 hardware flight tests broken up into test sets by nominal mission
altitude.
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Figure 4.13: Trajectory of flight test #12. No obstacles are present in the primary (green) ditch
site. Once Safe2Ditch is engaged, the vehicle successfully lands in the ditch site.

visual tracker to differentiate between moving objects and 3D structure, it does not hinder

the objective of Safe2Ditch, which is to avoid obstacles as the vehicle lands. Obstacles in

the ditch site that are detected based on motion or parallax will cause the vehicle to reroute

to a safer area.

4.6 Conclusion

In this paper, we presented a crash management system for sUAS. This system was

verified in 2000 Monte Carlo simulations with a constant nominal mission altitude and a

varying number of targets. The simulation results were then supplemented with 16 hardware

flight tests with either zero or one targets and varying the nominal mission altitude.

Using a pre-compiled database of potential ditch sites along the route of the nominal mis-

sion gives the sUAS potential landing options in the event of an emergency. The contribution
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Figure 4.14: Trajectory of flight test #13. Once Safe2Ditch is engaged, the vehicle begins its
descent toward the primary ditch site. Once motion is detected in the ditch site (plotted as red),
Safe2Ditch reroutes the vehicle to the secondary (yellow) ditch site, where the vehicle successfully
lands. The tracks shown in red, except for near the primary ditch site, are the result of parallax
due to the 3D structure of the scene. As the vehicle descends, parallax becomes more pronounced
and a greater number of false positives are received.
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of this paper is the augmentation of a pre-compiled database with on-board vision capabili-

ties, resulting in the Safe2Ditch system. The use of on-board visual tracking in conjunction

with a pre-compiled database for initial landing site selection reduces the processing require-

ments of the vision system, but allows the sUAS to react to non-cooperative obstacles in

populated environments. It is an important design criteria that the computational resources

needed for managing emergency landing be low so that the normal mission operation is not

hindered.

Future work will address the accuracy of the geolocation algorithm needed to determine if

obstacles are located within the selected ditch site. To increase the accuracy of the flat-earth

model geolocation estimate, the attitude uncertainty should be projected onto the ground

plane as well. Then, instead of checking if a single point is within a ditch site, the intersection

of the uncertainty and the ditch site would indicate how likely a target is in the ditch site.

Alternatively, instead of tracking targets in the image plane, a visual-inertial odometry or

visual SLAM approach could be taken to resolve the missing depth information from camera

data and track targets directly in the inertial frame. This type of approach would additionally

address the effects of parallax when flying low over non-planar environments.
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Chapter 5

Conclusion and Future Work

Emergency landing is a critical component of flying vehicles. To safely integrate un-

manned aircraft into the NAS, sUAS need greater autonomy so that they can safely land

when needed. In this thesis, we presented Safe2Ditch, a crash management system for sUAS

that utilizes a pre-compiled database of ditch sites and visual multiple target tracking. Using

Safe2Ditch, sUAS can successfully land in environments with non-cooperative moving obsta-

cles. A number of simulation and hardware demonstrations verified the current operational

envelope and helped identify areas of future work. The following sections discuss these topics

of future research for both Safe2Ditch specifically and multiple target tracking generally.

5.1 Safe2Ditch

As discussed in Chapter 4, the current version of Safe2Ditch assumes that there is always

an alternate ditch site with no motion, and that the vehicle has enough energy to get there.

Clearly, this may not always be the case and the vehicle may be forced to land in an area

that is still semi-populated. Using the information from the on-board camera and the visual

tracker, we would like to steer the vehicle to a obstacle-free sub-area within the selected

ditch site. Future work should address this need using a control method such as image-

based visual servoing (IBVS), which is the idea of using computer vision in a feedback loop

to control robot motion [65] Using IBVS to align the optical axis with a line-of-sight vector

that points at the safest sub-area in the ditch site, the vehicle could tactically maneuver

around non-cooperative obstacles, thereby addressing the “last 50 feet” problem [5].
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A point of weakness in the current system is the naive similar-triangles geolocation algo-

rithm used. This algorithm is problematic for two primary reasons: the flat-earth assumption

and attitude uncertainty. Using similar triangles to calculate the inertial position of ground

targets does not allow the uncertainty of vehicle attitude to be used. A stochastic filtering

approach could use the uncertainty information to better estimate where the targets are on

the ground. Alternatively, if the attitude uncertainty could be projected through the geolo-

cation equations, while respecting the manifold structure, the attitude uncertainty projected

onto the ground could be used to detect obstacles in the ditch site using an intersection-

over-union measure. This would alleviate the need for a single point to be inside in the ditch

site before a reroute is triggered by Safe2Ditch.

The problem with a flat-earth assumption is especially highlighted in Figure 4.14. Notice

the cloud of red markers indicating a tracked object at (−30, 60). As the vehicle flies low

(about 40 m) toward the secondary (yellow) ditch site, the tracking system begins tracking

a 5 m structure due to parallax. Because this structure is not flat, the geolocation algorithm

incorrectly estimates that its position is further west. However, the tracking due to parallax

is a fault of its own and is something that could better be addressed in the visual tracking

system, as discussed in the next section.

Currently, the visual system only tracks moving objects using a KLT-based feature

tracker. Using semantic segmentation could enhance the awareness of Safe2Ditch so that it

knows the type of environment (i.e., street, buildings, lake, parking lot) the vehicle is flying

in. Further, machine learning approaches such as support vector machines and convolutional

neural networks could be used as another measurement source to R-RANSAC to give the

ability to classify the types of objects it is tracking. This would give Safe2Ditch additional

information that it could use while selecting ditch sites and during tactical maneuvering.
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5.2 Visual Tracking

The visual tracker discussed in this thesis is a simple measurement generator for R-

RANSAC that can only detect and track moving objects. However, if the activation layers

of a convolutional neural network were used correlate historically tracked objects with similar

objects, R-RANSAC could receive measurements from targets that never began moving and

it would be able to track them.

As mentioned in the previous section, parallax often creates false positives while tracking

because it is difficult to separate the 3D structure of the scene from the motion of the camera.

While Safe2Ditch uses the false positives caused by parallax to correctly reroute to a flatter,

more suitable landing site, it would be ideal if false positives caused by parallax could be

separated from tracks from true targets. By decomposing the essential matrix into a rotation

and translation between two camera frames, the 3D structure of the scene could better be

accounted for.
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